
Otter-Grader Documentation

UCBDS Infrastructure Team

Sep 06, 2023

CONTENTS

1 Tutorial 1

2 Test Files 5

3 Creating Assignments 11

4 Student Usage 47

5 Grading Workflow 55

6 Submission Execution 77

7 Plugins 81

8 PDF Generation and Filtering 91

9 Intercell Seeding 93

10 Logging 97

11 otter.api Reference 105

12 CLI Reference 107

13 Resources 113

14 Installation 115

Python Module Index 117

Index 119

i

ii

CHAPTER

ONE

TUTORIAL

This tutorial can help you to verify that you have installed Otter correctly and introduce you to the general Otter work-
flow. Once you have installed Otter, download this zip file and unzip it into some directory on your machine; you
should have the following directory structure:

tutorial
demo.ipynb
requirements.txt
submissions

ipynbs
demo-fails1.ipynb
demo-fails2.ipynb
demo-fails2Hidden.ipynb
demo-fails3.ipynb
demo-fails3Hidden.ipynb
demo-passesAll.ipynb

zips
demo-fails1.zip
demo-fails2.zip
demo-fails2Hidden.zip
demo-fails3.zip
demo-fails3Hidden.zip
demo-passesAll.zip

This section describes the basic execution of Otter’s tools using the provided zip file. It is meant to verify your instal-
lation and to loosely describe how a few Otter tools are used. This tutorial covers Otter Assign, Otter Generate, and
Otter Grade.

1.1 Otter Assign

Start by moving into the tutorial directrory. This directory includes the master notebook demo.ipynb. Look over
this notebook to get an idea of its structure. It contains five questions, four code and one Markdown (two of which are
manually-graded). Also note that the assignment configuration in the first cell tells Otter Assign to generate a solutions
PDF and an autograder zip file and to include special submission instructions before the export cell. To run Otter
Assign on this notebook, run

$ otter assign demo.ipynb dist
Generating views...
Generating solutions PDF...
Generating autograder zipfile...

(continues on next page)

1

_static/tutorial.zip

Otter-Grader Documentation

(continued from previous page)

Running tests...
All tests passed!

Otter Assign should create a dist directory which contains two further subdirectories: autograder and student.
The autograder directory contains the Gradescope autograder, solutions PDF, and the notebook with solutions. The
student directory contains just the sanitized student notebook.

tutorial/dist
autograder

autograder.zip
demo-sol.pdf
demo.ipynb
otter_config.json
requirements.txt

student
demo.ipynb

For more information about the configurations for Otter Assign and its output format, see Creating Assignments.

1.2 Otter Generate

In the dist/autograder directory created by Otter Assign, there should be a file called autograder.zip. This file
is the result of using Otter Generate to generate a zip file with all of your tests and requirements, which is done invisibly
by Otter Assign when it is used (which it is configured to do in the assignment metadata). Alternatively, you could
generate this zip file yourself from the contents of dist/autograder by running

otter generate

in that directory (but this is not recommended).

1.3 Otter Grade

Note: You should complete the Otter Assign tutorial above before running this tutorial, as you will need some of its
output files.

At this step of grading, the instructor faces a choice: where to grade assignments. The rest of this tutorial details how
to grade assignments locally using Docker containers on the instructor’s machine. You can also grade on Gradescope
or without containerization, as described in the Executing Submissions section.

Let’s now construct a call to Otter that will grade these notebooks. We will use dist/autograder/autograder.zip
from running Otter Assign to configure our grading image. Our notebooks are in the ipynbs subdirectory, so we’ll
need to use the -p flag. The notebooks also contain a couple of written questions, and the filtering is implemented
using HTML comments, so we’ll specify the --pdfs flag to indicate that Otter should grab the PDFs out of the Docker
containers.

Let’s run Otter on the notebooks:

otter grade -p submissions/ipynbs -a dist/autograder/demo-autograder_*.zip --pdfs -v

(The -v flag so that we get verbose output.) After this finishes running, there should be a new file and a new folder in
the working directory: final_grades.csv and submission_pdfs. The former should contain the grades for each
file, and should look something like this:

2 Chapter 1. Tutorial

Otter-Grader Documentation

file,q1,q2,q3
fails3Hidden.ipynb,1.0,1.0,0.5
passesAll.ipynb,1.0,1.0,1.0
fails1.ipynb,0.6666666666666666,1.0,1.0
fails2Hidden.ipynb,1.0,0.5,1.0
fails3.ipynb,1.0,1.0,0.375
fails2.ipynb,1.0,0.0,1.0

Let’s make that a bit prettier:

file q1 q2 q3
fails3Hidden.ipynb 1.0 1.0 0.5
passesAll.ipynb 1.0 1.0 1.0
fails1.ipynb 0.6666666666666666 1.0 1.0
fails2Hidden.ipynb 1.0 0.5 1.0
fails3.ipynb 1.0 1.0 0.375
fails2.ipynb 1.0 0.0 1.0

The latter, the submission_pdfs directory, should contain the filtered PDFs of each notebook (which should be
relatively similar).

Otter Grade can also grade the zip file exports provided by the Notebook.export method. Before grading the zip
files, you must edit your autograder.zip to indicate that you’re doing so. To do this, open demo.ipynb (the file we
used with Otter Assign) and edit the first cell of the notebook (beginning with BEGIN ASSIGNMENT) so that the zips
key under generate is true in the YAML and rerun Otter Assign.

Now, all we need to do is add the -z flag to the call to indicate that you’re grading these zip files. We have provided
some, with the same notebooks as above, in the zips directory, so let’s grade those:

otter grade -p submissions/zips -a dist/autograder/demo-autograder_*.zip -vz

This should have the same CSV output as above but no submission_pdfs directory since we didn’t tell Otter to
generate PDFs.

You can learn more about the grading workflow for Otter in this section.

1.3. Otter Grade 3

Otter-Grader Documentation

4 Chapter 1. Tutorial

CHAPTER

TWO

TEST FILES

2.1 Python Format

Python test files can follow one of two formats: exception-based or the OK format.

2.1.1 Exception-Based Format

The exception-based test file format relies on an idea similar to unit tests in pytest: an instructor writes a series of test
case functions that raise errors if the test case fails; if no errors are raised, the test case passes.

Test case functions should be decorated with the otter.test_files.test_case decorator, which holds metadata
about the test case. The test_case decorator takes (optional) the arguments:

• name: the name of the test case

• points: the point value of the test case (default None)

• hidden: whether the test case is hidden (default False)

• success_message: a message to display to the student if the test case passes

• failure_message: a message to display to the student if the test case fails

The test file should also declare the global variable name, which should be a string containing the name of the test case,
and (optionally) points, which should be the total point value of the question. If this is absent (or set to None), it will
be inferred from the point values of each test case as described below. Because Otter also supports OK-formatted test
files, the global variable OK_FORMAT must be set to False in exception-based test files.

When a test case fails and an error is raised, the full stack trace and error message will be shown to the student. This
means that you can use the error message to provide the students with information about why the test failed:

assert fib(1) == 0, "Your fib function didn't handle the base case correctly."

Calling Test Case Functions

Because test files are evaluated before the student’s global environment is provided, test files will not have access to
the global environment during execution. However, Otter uses the test case function arguments to pass elements from
the global environment, or the global environment itself.

If the test case function has an argument name env, the student’s global environment will be passed in as the value
for that argument. For any other argument name, the value of that variable in the student’s global environment will be
passed in; if that variable is not present, it will default to None.

For example, the test function with the signature

5

Otter-Grader Documentation

test_square(square, env)

would be called like

test_square(square=globals().get("square"), env=globals())

in the student’s environment.

Sample Test

Here is a sample exception-based test file. The example below tests a student’s sieve function, which uses the Sieve
of Eratosthenes to return a set of the n first prime numbers.

from otter.test_files import test_case

OK_FORMAT = False

name = "q1"
points = 2

@test_case()
def test_low_primes(sieve):

assert sieve(1) == set()
assert sieve(2) == {2}
assert sieve(3) == {3}

@test_case(points=2, hidden=True)
def test_higher_primes(env):

assert env["sieve"](20) == {2, 3, 5, 7, 11, 13, 17, 19}
assert sieve(100) == {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97}

Resolving Point Values

Point values for each test case and the question defined by the test file will be resolved as follows:

• If one or more test cases specify a point value and no point value is specified for the question, each test case with
unspecified point values is assumed to be worth 0 points unless all test cases with specified points are worth 0
points; in this case, the question is assumed to be worth 1 point and the test cases with unspecified points are
equally weighted.

• If one or more test cases specify a point value and a point value is specified for the test file, each test case with
unspecified point values is assumed to be equally weighted and together are worth the test file point value less
the sum of specified point values. For example, in a 6-point test file with 4 test cases where two test cases are
each specified to be worth 2 points, each of the other test cases is worth 6−(2+2)

2 = 1 point.)

• If no test cases specify a point value and a point value is specified for the test file, each test case is assumed to
be equally weighted and is assigned a point value of 𝑝

𝑛 where 𝑝 is the number of points for the test file and 𝑛 is
the number of test cases.

• If no test cases specify a point value and no point value is specified for the test file, the test file is assumed to be
worth 1 point and each test case is equally weighted.

6 Chapter 2. Test Files

Otter-Grader Documentation

2.1.2 OK Format

You can also write OK-formatted tests to check students’ work against. These have a very specific format, described in
detail in the OkPy documentation. There is also a resource we developed on writing autograder tests that can be found
here; this guide details things like the doctest format, the pitfalls of string comparison, and seeding tests.

Caveats

While Otter uses OK format, there are a few caveats to the tests when using them with Otter.

• Otter only allows a single suite in each test, although the suite can have any number of cases. This means that
test["suites"] should be a list of length 1, whose only element is a dict.

• Otter uses the "hidden" key of each test case only on Gradescope. When displaying results on Gradescope, the
test["suites"][0]["cases"][<int>]["hidden"] should evaluate to a boolean that indicates whether or
not the test is hidden. The behavior of showing and hiding tests is described in Grading on Gradescope.

Writing OK Tests

We recommend that you develop assignments using Otter Assign, a tool which will generate these test files for you. If
you already have assignments or would prefer to write them yourself, you can find an online OK test generator that will
assist you in generating these test files without using Otter Assign.

Because Otter also supports exception-based test files, the global variable OK_FORMAT must be set to True in OK-
formatted test files.

Sample Test

Here is an annotated sample OK test:

OK_FORMAT = True

test = {
"name": "q1", # name of the test
"points": 1, # number of points for the entire suite
"suites": [# list of suites, only 1 suite allowed!

{
"cases": [# list of test cases

{ # each case is a dict
"code": r""" # test, formatted for Python interpreter
>>> 1 == 1 # note that in any subsequence line of a␣

→˓multiline
True # statement, the prompt becomes ... (see below)
""",
"hidden": False, # used to determine case visibility on Gradescope
"locked": False, # ignored by Otter

},
{

"code": r"""
>>> for i in range(4):
... print(i == 1)
False
True

(continues on next page)

2.1. Python Format 7

https://okpy.github.io/documentation/client.html#ok-client-setup-ok-tests
https://autograder-tests.rtfd.io
https://oktests.chrispyles.io

Otter-Grader Documentation

(continued from previous page)

False
False
""",
"hidden": False,
"locked": False,

},
],
"scored": False, # ignored by Otter
"setup": "", # ignored by Otter
"teardown": "", # ignored by Otter
"type": "doctest" # the type of test; only "doctest" allowed

},
]

}

2.2 R Format

Ottr tests are constructed by creating a JSON-like object (a list) that has a list of instances of the R6 class
ottr::TestCase. The body of each test case is a block of code that should raise an error if the test fails, and no
error if it passes. The list of test cases should be declared in a global test variable. The structure of the test file looks
something like:

test = list(
name = "q1",
cases = list(

ottr::TestCase$new(
name = "q1a",
code = {

testthat::expect_true(ans.1 > 1)
testthat::expect_true(ans.1 < 2)

}
),
ottr::TestCase$new(

name = "q1b",
hidden = TRUE,
code = {

tol = 1e-5
actual_answer = 1.27324
testthat::expect_true(ans.1 > actual_answer - tol)
testthat::expect_true(ans.1 < actual_answer + tol)

}
)

)
)

Note that the example above uses the expect_* functions exported by testthat to assert conditions that raise errors.
The constructor for ottr::TestCase accepts the following arguments:

• name: the name of the test case

• points: the point value of the test case

8 Chapter 2. Test Files

Otter-Grader Documentation

• hidden: whether this is a hidden test

• code: the body of the test

Otter has different test file formats depending on which language you are grading. Python test files can follow an
exception-based unit-test-esque format like pytest, or can follow the OK format, a legacy of the OkPy autograder that
Otter inherits from. R test files are like unit tests and rely on TestCase classes exported by the ottr package.

2.2. R Format 9

Otter-Grader Documentation

10 Chapter 2. Test Files

CHAPTER

THREE

CREATING ASSIGNMENTS

3.1 Otter Assign Format v0

3.1.1 Python Notebook Format

Otter’s notebook format groups prompts, solutions, and tests together into questions. Autograder tests are specified
as cells in the notebook and their output is used as the expected output of the autograder when genreating tests. Each
question has metadata, expressed in a code block in YAML format when the question is declared. Tests generated by
Otter Assign follow the Otter- compliant OK format.

Note: Otter Assign is also backwards-compatible with jAssign-formatted notebooks. For more information about
formatting notebooks for jAssign, see its documentation.

Assignment Metadata

In addition to various command line arugments discussed below, Otter Assign also allows you to specify various
assignment generation arguments in an assignment metadata cell. These are very similar to the question metadata cells
described in the next section. Assignment metadata, included by convention as the first cell of the notebook, places
YAML-formatted configurations inside a code block that begins with BEGIN ASSIGNMENT:

```
BEGIN ASSIGNMENT
init_cell: false
export_cell: true
...
```

This cell is removed from both output notebooks. These configurations, listed in the YAML snippet below, can be
overwritten by their command line counterparts (e.g. init_cell: true is overwritten by the --no-init-cell
flag). The options, their defaults, and descriptions are listed below. Any unspecified keys will keep their default values.
For more information about many of these arguments, see Usage and Output. Any keys that map to sub-dictionaries
(e.g. export_cell, generate) can have their behaviors turned off by changing their value to false. The only one
that defaults to true (with the specified sub-key defaults) is export_cell.

requirements: null # the path to a requirements.txt file
overwrite_requirements: false # whether to overwrite Otter's default requirement.txt in␣
→˓Otter Generate
environment: null # the path to a conda environment.yml file
run_tests: true # whether to run the assignment tests against the␣
→˓autograder notebook

(continues on next page)

11

https://github.com/okpy/jassign/blob/master/docs/notebook-format.md

Otter-Grader Documentation

(continued from previous page)

solutions_pdf: false # whether to generate a PDF of the solutions notebook
template_pdf: false # whether to generate a filtered Gradescope assignment␣
→˓template PDF
init_cell: true # whether to include an Otter initialization cell in the␣
→˓output notebooks
check_all_cell: true # whether to include an Otter check-all cell in the␣
→˓output notebooks
export_cell: # whether to include an Otter export cell in the output␣
→˓notebooks
instructions: '' # additional submission instructions to include in the␣

→˓export cell
pdf: true # whether to include a PDF of the notebook in the␣

→˓generated zip file
filtering: true # whether the generated PDF should be filtered
force_save: false # whether to force-save the notebook with JavaScript␣

→˓(only works in classic notebook)
run_tests: false # whether to run student submissions against local tests␣

→˓during export
seed: null # a seed for intercell seeding
generate: false # grading configurations to be passed to Otter Generate␣
→˓as an otter_config.json; if false, Otter Generate is disabled
save_environment: false # whether to save the student's environment in the log
variables: {} # a mapping of variable names to type strings for␣
→˓serlizing environments
ignore_modules: [] # a list of modules to ignore variables from during␣
→˓environment serialization
files: [] # a list of other files to include in the output␣
→˓directories and autograder
autograder_files: [] # a list of other files only to include in the autograder
plugins: [] # a list of plugin names and configurations
test_files: true # whether to store tests in separate .py files rather␣
→˓than in the notebook metadata
runs_on: default # the interpreter this notebook will be run on if␣
→˓different from the default IPython interpreter (one of {'default', 'colab', 'jupyterlite'})

All paths specified in the configuration should be relative to the directory containing the master notebook. If, for
example, I was running Otter Assign on the lab00.ipynb notebook in the structure below:

dev
lab

lab00
data

data.csv
lab00.ipynb
utils.py

requirements.txt

and I wanted my requirements from dev/requirements.txt to be include, my configuration would look something
like this:

requirements: ../../requirements.txt
files:

(continues on next page)

12 Chapter 3. Creating Assignments

Otter-Grader Documentation

(continued from previous page)

- data/data.csv
- utils.py

...

A note about Otter Generate: the generate key of the assignment metadata has two forms. If you just want to generate
and require no additional arguments, set generate: true in the YAML and Otter Assign will simply run otter
generate from the autograder directory (this will also include any files passed to files, whose paths should be rela-
tive to the directory containing the notebook, not to the directory of execution). If you require additional arguments,
e.g. points or show_stdout, then set generate to a nested dictionary of these parameters and their values:

generate:
seed: 42
show_stdout: true
show_hidden: true

You can also set the autograder up to automatically upload PDFs to student submissions to another Gradescope assign-
ment by setting the necessary keys in generate:

generate:
token: ''
course_id: 1234 # required
assignment_id: 5678 # required
filtering: true # true is the default

If you don’t specify a token, you will be prompted for your username and password when you run Otter Assign; op-
tionally, you can specify these via the command line with the --username and --password flags. You can also run
the following to retrieve your token:

from otter.generate.token import APIClient
print(APIClient.get_token())

Any configurations in your generate key will be put into an otter_config.json and used when running Otter
Generate.

If you are grading from the log or would like to store students’ environments in the log, use the save_environment key.
If this key is set to true, Otter will serialize the stuednt’s environment whenever a check is run, as described in Logging.
To restrict the serialization of variables to specific names and types, use the variables key, which maps variable names
to fully-qualified type strings. The ignore_modules key is used to ignore functions from specific modules. To turn
on grading from the log on Gradescope, set generate[grade_from_log] to true. The configuration below turns
on the serialization of environments, storing only variables of the name df that are pandas dataframes.

save_environment: true
variables:

df: pandas.core.frame.DataFrame

As an example, the following assignment metadata includes an export cell but no filtering, no init cell, and passes the
configurations points and seed to Otter Generate via the otter_config.json.

```
BEGIN ASSIGNMENT
export_cell:

filtering: false
init_cell: false

(continues on next page)

3.1. Otter Assign Format v0 13



Otter-Grader Documentation

(continued from previous page)

generate:
points: 3
seed: 0

```

Autograded Questions

Here is an example question in an Otter Assign-formatted notebook:

For code questions, a question is a description Markdown cell, followed by a solution code cell and zero or more test
code cells. The description cell must contain a code block (enclosed in triple backticks ```) that begins with BEGIN
QUESTION on its own line, followed by YAML that defines metadata associated with the question.

The rest of the code block within the description cell must be YAML-formatted with the following fields (in any order):

name: null # (required) the path to a requirements.txt file
manual: false # whether this is a manually-graded question
points: null # how many points this question is worth; defaults to 1 internally
check_cell: true # whether to include a check cell after this question (for autograded␣
→˓questions only)

As an example, the question metadata below indicates an autograded question q1 worth 1 point.

```
BEGIN QUESTION
name: q1
manual: false
```

Question Points

The points key of the question metadata defines how many points each autograded question is worth. Note that the
value specified here will be divided evenly among each test case you define for the question. Test cases are defined by
the test cells you create (one test cell is one test case). So if you have three test cells and the question is worth 1 point
(the default), each test case is worth 1/3 point and students will earn partial credit on the question by according to the
proportion of test cases they pass.

Note that you can also define a point value for each individual test case by setting points to a dictionary with a single
key, each:

points:
each: 1

or by setting points to a list of point values. The length of this list must equal the number of test cases, public and
hidden, that correspond to this test case.

points:
- 0
- 1
- 0.5
etc.

14 Chapter 3. Creating Assignments

Otter-Grader Documentation

Solution Removal

Solution cells contain code formatted in such a way that the assign parser replaces lines or portions of lines with
prespecified prompts. Otter uses the same solution replacement rules as jAssign. From the jAssign docs:

• A line ending in # SOLUTION will be replaced by ..., properly indented. If that line is an assignment statement,
then only the expression(s) after the = symbol will be replaced.

• A line ending in # SOLUTION NO PROMPT or # SEED will be removed.

• A line # BEGIN SOLUTION or # BEGIN SOLUTION NO PROMPT must be paired with a later line # END
SOLUTION. All lines in between are replaced with ... or removed completely in the case of NO PROMPT.

• A line """ # BEGIN PROMPT must be paired with a later line """ # END PROMPT. The contents of this mul-
tiline string (excluding the # BEGIN PROMPT) appears in the student cell. Single or double quotes are allowed.
Optionally, a semicolon can be used to suppress output: """; # END PROMPT

def square(x):
y = x * x # SOLUTION NO PROMPT
return y # SOLUTION

nine = square(3) # SOLUTION

would be presented to students as

def square(x):
...

nine = ...

And

pi = 3.14
if True:

BEGIN SOLUTION
radius = 3
area = radius * pi * pi
END SOLUTION
print('A circle with radius', radius, 'has area', area)

def circumference(r):
BEGIN SOLUTION NO PROMPT
return 2 * pi * r
END SOLUTION
""" # BEGIN PROMPT
Next, define a circumference function.
pass
"""; # END PROMPT

would be presented to students as

pi = 3.14
if True:

...
print('A circle with radius', radius, 'has area', area)

(continues on next page)

3.1. Otter Assign Format v0 15

https://github.com/okpy/jassign/blob/master/docs/notebook-format.md

Otter-Grader Documentation

(continued from previous page)

def circumference(r):
Next, define a circumference function.
pass

Test Cells

There are two ways to format test cells. The test cells are any code cells following the solution cell that begin with the
comment ## Test ## or ## Hidden Test ## (case insensitive). A Test is distributed to students so that they can
validate their work. A Hidden Test is not distributed to students, but is used for scoring their work.

Test cells also support test case-level metadata. If your test requires metadata beyond whether the test is hidden or not,
specify the test by including a mutliline string at the top of the cell that includes YAML-formatted test metadata. For
example,

""" # BEGIN TEST CONFIG
points: 1
success_message: Good job!
""" # END TEST CONFIG
do_something()

The test metadata supports the following keys with the defaults specified below:

hidden: false # whether the test is hidden
points: null # the point value of the test
success_message: null # a messsge to show to the student when the test case passes
failure_message: null # a messsge to show to the student when the test case fails

Because points can be specified at the question level and at the test case level, Otter will resolve the point value of each
test case as described here.

Note: Currently, the conversion to OK format does not handle multi-line tests if any line but the last one generates
output. So, if you want to print twice, make two separate test cells instead of a single cell with:

print(1)
print(2)

If a question has no solution cell provided, the question will either be removed from the output notebook entirely if
it has only hidden tests or will be replaced with an unprompted Notebook.check cell that runs those tests. In either
case, the test files are written, but this provides a way of defining additional test cases that do not have public versions.
Note, however, that the lack of a Notebook.check cell for questions with only hidden tests means that the tests are
run at the end of execution, and therefore are not robust to variable name collisions.

Intercell Seeding

Otter Assign maintains support for intercell seeding by allowing seeds to be set in solution cells. To add a seed, write a
line that ends with # SEED; when Otter runs, this line will be removed from the student version of the notebook. This
allows instructors to write code with deterministic output, with which hidden tests can be generated.

Note that seed cells are removed in student outputs, so any results in that notebook may be different from the provided
tests. However, when grading, seeds are executed between each cell, so if you are using seeds, make sure to use the
same seed every time to ensure that seeding before every cell won’t affect your tests. You will also be required to set
this seed as a configuration of the generate key of the assignment metadata if using Otter Generate with Otter Assign.

16 Chapter 3. Creating Assignments

Otter-Grader Documentation

Manually Graded Questions

Otter Assign also supports manually-graded questions using a similar specification to the one described above. To
indicate a manually-graded question, set manual: true in the question metadata. A manually-graded question is
defined by three parts:

• a question cell with metadata

• (optionally) a prompt cell

• a solution cell

Manually-graded solution cells have two formats:

• If a code cell, they can be delimited by solution removal syntax as above.

• If a Markdown cell, the start of at least one line must match the regex (|*{2})solution:?(<\/
strong>|*{2}).

The latter means that as long as one of the lines in the cell starts with SOLUTION (case insensitive, with or without
a colon :) in boldface, the cell is considered a solution cell. If there is a prompt cell for manually-graded questions
(i.e. a cell between the question cell and solution cell), then this prompt is included in the output. If none is present,
Otter Assign automatically adds a Markdown cell with the contents _Type your answer here, replacing this
text._.

Manually graded questions are automatically enclosed in <!-- BEGIN QUESTION --> and <!-- END QUESTION
--> tags by Otter Assign so that only these questions are exported to the PDF when filtering is turned on (the default).
In the autograder notebook, this includes the question cell, prompt cell, and solution cell. In the student notebook, this
includes only the question and prompt cells. The <!-- END QUESTION --> tag is automatically inserted at the top of
the next cell if it is a Markdown cell or in a new Markdown cell before the next cell if it is not.

An example of a manually-graded code question:

An example of a manually-graded written question (with no prompt):

3.1. Otter Assign Format v0 17

images/assign_sample_code_manual.png

Otter-Grader Documentation

An example of a manuall-graded written question with a custom prompt:

Ignoring Cells

For any cells that you don’t want to be included in either of the output notebooks that are present in the master notebook,
include a line at the top of the cell with the ## Ignore ## comment (case insensitive) just like with test cells. Note
that this also works for Markdown cells with the same syntax.

Ignore
print("This cell won't appear in the output.")

Student-Facing Plugins

Otter supports student-facing plugin events via the otter.Notebook.run_plugin method. To include a student-
facing plugin call in the resulting versions of your master notebook, add a multiline plugin config string to a code cell
of your choosing. The plugin config should be YAML-formatted as a mutliline comment-delimited string, similar to
the solution and prompt blocks above. The comments # BEGIN PLUGIN and # END PLUGIN should be used on the
lines with the triple-quotes to delimit the YAML’s boundaries. There is one required configuration: the plugin name,
which should be a fully-qualified importable string that evaluates to a plugin that inherits from otter.plugins.
AbstractOtterPlugin.

There are two optional configurations: args and kwargs. args should be a list of additional arguments to pass to the
plugin. These will be left unquoted as-is, so you can pass variables in the notebook to the plugin just by listing them.
kwargs should be a dictionary that mappins keyword argument names to values; thse will also be added to the call in
key=value format.

Here is an example of plugin replacement in Otter Assign:

18 Chapter 3. Creating Assignments

images/assign_sample_written_manual.png
images/assign_sample_written_manual_with_prompt.png

Otter-Grader Documentation

3.1.2 R Notebook Format

Otter Assign is compatible with Otter’s R autograding system and currently supports Jupyter notebook master docu-
ments. The format for using Otter Assign with R is very similar to the Python format with a few important differences.

Assignment Metadata

As with Python, Otter Assign for R also allows you to specify various assignment generation arguments in an assignment
metadata cell.

```
BEGIN ASSIGNMENT
init_cell: false
export_cell: true
...
```

This cell is removed from both output notebooks. Any unspecified keys will keep their default values. For more
information about many of these arguments, see Usage and Output. The YAML block below lists all configurations
supported with R and their defaults. Any keys that appear in the Python section but not below will be ignored when
using Otter Assign with R.

requirements: requirements.txt # path to a requirements file for Gradescope; appended by␣
→˓default
overwrite_requirements: false # whether to overwrite Otter's default requirements rather␣
→˓than appending
environment: environment.yml # path to custom conda environment file
template_pdf: false # whether to generate a manual question template PDF for␣
→˓Gradescope
generate: # configurations for running Otter Generate; defaults to␣
→˓false
points: null # number of points to scale assignment to on Gradescope
threshold: null # a pass/fail threshold for the assignment on Gradescope
show_stdout: false # whether to show grading stdout to students once␣

→˓grades are published
show_hidden: false # whether to show hidden test results to students once␣

→˓grades are published
files: [] # a list of file paths to include in the distribution␣
→˓directories

Autograded Questions

Here is an example question in an Otter Assign for R formatted notebook:

For code questions, a question is a description Markdown cell, followed by a solution code cell and zero or more test
code cells. The description cell must contain a code block (enclosed in triple backticks ```) that begins with BEGIN
QUESTION on its own line, followed by YAML that defines metadata associated with the question.

The rest of the code block within the description cell must be YAML-formatted with the following fields (in any order):

• name (required) - a string identifier that is a legal file name (without an extension)

• manual (optional) - a boolean (default false); whether to include the response cell in a PDF for manual grading

3.1. Otter Assign Format v0 19

Otter-Grader Documentation

• points (optional) - a number or list of numbers for the point values of each question. If a list of values, each case
gets its corresponding value. If a single value, the number is divided by the number of cases so that a question
with 𝑛 cases has test cases worth points

𝑛 points.

As an example, the question metadata below indicates an autograded question q1 with 3 subparts worth 1, 2, and 1
points, respectively.

```
BEGIN QUESTION
name: q1
points:

- 1
- 2
- 1

```

Solution Removal

Solution cells contain code formatted in such a way that the assign parser replaces lines or portions of lines with
prespecified prompts. The format for solution cells in R notebooks is the same as in Python notebooks, described here.
Otter Assign’s solution removal for prompts is compatible with normal strings in R, including assigning these to a
dummy variable so that there is no undesired output below the cell:

this is OK:
. = " # BEGIN PROMPT
some.var <- ...
" # END PROMPT

Test Cells

The test cells are any code cells following the solution cell that begin with the comment ## Test ## or ## Hidden
Test ## (case insensitive). A Test is distributed to students so that they can validate their work. A Hidden Test is
not distributed to students, but is used for scoring their work. When writing tests, each test cell maps to a single test
case and should raise an error if the test fails. The removal behavior regarding questions with no solution provided
holds for R notebooks.

Test
testthat::expect_true(some_bool)

Hidden Test
testthat::expect_equal(some_value, 1.04)

20 Chapter 3. Creating Assignments

Otter-Grader Documentation

Manually Graded Questions

Otter Assign also supports manually-graded questions using a similar specification to the one described above. The
behavior for manually graded questions in R is exactly the same as it is in Python.

3.1.3 RMarkdown Format

Otter Assign is compatible with Otter’s R autograding system and currently supports Jupyter notebook and RMarkdown
master documents. The format for using Otter Assign with R is very similar to the Python format with a few important
differences.

Assignment Metadata

As with Python, Otter Assign for R also allows you to specify various assignment generation arguments in an assignment
metadata code block.

```
BEGIN ASSIGNMENT
init_cell: false
export_cell: true
...
```

This block is removed from both output files. Any unspecified keys will keep their default values. For more information
about many of these arguments, see Usage and Output. The YAML block below lists all configurations supported
with Rmd files and their defaults. Any keys that appear in the Python or R Juptyer notebook sections but not below
will be ignored when using Otter Assign with Rmd files.

requirements: requirements.txt # path to a requirements file for Gradescope; appended by␣
→˓default
overwrite_requirements: false # whether to overwrite Otter's default requirements rather␣
→˓than appending
environment: environment.yml # path to custom conda environment file
generate: # configurations for running Otter Generate; defaults to␣
→˓false
points: null # number of points to scale assignment to on Gradescope
threshold: null # a pass/fail threshold for the assignment on Gradescope
show_stdout: false # whether to show grading stdout to students once grades␣

→˓are published
show_hidden: false # whether to show hidden test results to students once␣

→˓grades are published
files: [] # a list of file paths to include in the distribution␣
→˓directories

3.1. Otter Assign Format v0 21

Otter-Grader Documentation

Autograded Questions

Here is an example question in an Otter Assign-formatted Rmd file:

Question 1: Find the radius of a circle that has a 90 deg. arc of length 2. Assign␣
→˓this
value to `ans.1`

```
BEGIN QUESTION
name: q1
manual: false
points:

- 1
- 1

```

```{r}
ans.1 <- 2 * 2 * pi * 2 / pi / pi / 2 # SOLUTION
```

```{r}
## Test ##
testthat::expect_true(ans.1 > 1)
testthat::expect_true(ans.1 < 2)
```

```{r}
## Hidden Test ##
tol = 1e-5
actual_answer = 1.27324
testthat::expect_true(ans.1 > actual_answer - tol)
testthat::expect_true(ans.1 < actual_answer + tol)
```

For code questions, a question is a some description markup, followed by a solution code blocks and zero or more
test code blocks. The description must contain a code block (enclosed in triple backticks ```) that begins with BEGIN
QUESTION on its own line, followed by YAML that defines metadata associated with the question.

The rest of the code block within the description cell must be YAML-formatted with the following f ields (in any order):

• name (required) - a string identifier that is a legal file name (without an extension)

• manual (optional) - a boolean (default false); whether to include the response cell in a PDF for manual grading

• points (optional) - a number or list of numbers for the point values of each question. If a list of values, each case
gets its corresponding value. If a single value, the number is divided by the number of cases so that a question
with 𝑛 cases has test cases worth points

𝑛 points.

As an example, the question metadata below indicates an autograded question q1 with 3 subparts worth 1, 2, and 1
points, resp.

```
BEGIN QUESTION
name: q1
points:

(continues on next page)

22 Chapter 3. Creating Assignments



Otter-Grader Documentation

(continued from previous page)

- 1
- 2
- 1

```

Solution Removal

Solution cells contain code formatted in such a way that the assign parser replaces lines or portions of lines with
prespecified prompts. The format for solution cells in Rmd files is the same as in Python and R Jupyter notebooks,
described here. Otter Assign’s solution removal for prompts is compatible with normal strings in R, including assigning
these to a dummy variable so that there is no undesired output below the cell:

this is OK:
. = " # BEGIN PROMPT
some.var <- ...
" # END PROMPT

Test Cells

The test cells are any code cells following the solution cell that begin with the comment ## Test ## or ## Hidden
Test ## (case insensitive). A Test is distributed to students so that they can validate their work. A Hidden Test is
not distributed to students, but is used for scoring their work. When writing tests, each test cell maps to a single test
case and should raise an error if the test fails. The removal behavior regarding questions with no solution provided
holds for R notebooks.

Test
testthat::expect_true(some_bool)

Hidden Test
testthat::expect_equal(some_value, 1.04)

Manually Graded Questions

Otter Assign also supports manually-graded questions using a similar specification to the one described above. To
indicate a manually-graded question, set manual: true in the question metadata. A manually-graded question is
defined by three parts:

• a question metadata

• (optionally) a prompt

• a solution

Manually-graded solution cells have two formats:

• If the response is code (e.g. making a plot), they can be delimited by solution removal syntax as above.

• If the response is markup, the the solution should be wrapped in special HTML comments (see below) to indicate
removal in the sanitized version.

To delimit a markup solution to a manual question, wrap the solution in the HTML comments <!-- BEGIN SOLUTION
--> and <!-- END SOLUTION --> on their own lines to indicate that the content in between should be removed.

3.1. Otter Assign Format v0 23

Otter-Grader Documentation

<!-- BEGIN SOLUTION -->
solution goes here
<!-- END SOLUTION -->

To use a custom Markdown prompt, include a <!-- BEGIN/END PROMPT --> block with a solution block, but add
NO PROMPT inside the BEGIN SOLUTION comment:

<!-- BEGIN PROMPT -->
prompt goes here
<!-- END PROMPT -->

<!-- BEGIN SOLUTION NO PROMPT -->
solution goes here
<!-- END SOLUTION -->

If NO PROMPT is not indicate, Otter Assign automatically replaces the solution with a line containing _Type your
answer here, replacing this text._.

An example of a manually-graded code question:

Question 7: Plot $f(x) = \cos e^x$ on $[0,10]$.

```
BEGIN QUESTION
name: q7
manual: true
```

```{r}
# BEGIN SOLUTION
x = seq(0, 10, 0.01)
y = cos(exp(x))
ggplot(data.frame(x, y), aes(x=x, y=y)) +

geom_line()
# END SOLUTION
```

An example of a manually-graded written question (with no prompt):

Question 5: Simplify $\sum_{i=1}^n n$.

```
BEGIN QUESTION
name: q5
manual: true
```

<!-- BEGIN SOLUTION -->
$\frac{n(n+1)}{2}$
<!-- END SOLUTION -->

An example of a manuall-graded written question with a custom prompt:

24 Chapter 3. Creating Assignments

Otter-Grader Documentation

Question 6: Fill in the blank.

```
BEGIN QUESTION
name: q6
manual: true
```

<!-- BEGIN PROMPT -->
The mitochonrida is the ___________ of the cell.
<!-- END PROMPT -->

<!-- BEGIN SOLUTION NO PROMPT -->
powerhouse
<!-- END SOLUTION -->

3.1.4 Usage and Output

Otter Assign is called using the otter assign command. This command takes in two required arguments. The first is
master, the path to the master notebook (the one formatted as described above), and the second is result, the path at
which output shoud be written. Otter Assign will automatically recognize the language of the notebook by looking
at the kernel metadata; similarly, if using an Rmd file, it will automatically choose the language as R. This behavior
can be overridden using the -l flag which takes the name of the language as its argument.

The default behavior of Otter Assign is to do the following:

1. Filter test cells from the master notebook and write these to test files

2. Add Otter initialization, export, and Notebook.check_all cells

3. Clear outputs and write questions (with metadata hidden), prompts, and solutions to a notebook in a new
autograder directory

4. Write all tests to autograder/tests

5. Copy autograder notebook with solutions removed into a new student directory

6. Write public tests to student/tests

7. Copy files into autograder and student directories

8. Run all tests in autograder/tests on the solutions notebook to ensure they pass

9. (If generate is passed,) generate a Gradescope autograder zipfile from the autograder directory

The behaviors described in step 2 can be overridden using the optional arguments described in the help specification.

An important note: make sure that you run all cells in the master notebook and save it with the outputs so that Otter
Assign can generate the test files based on these outputs. The outputs will be cleared in the copies generated by Otter
Assign.

To run Otter Assign on a v0-formatted notebook, make sure to use the --v0 flag.

3.1. Otter Assign Format v0 25

Otter-Grader Documentation

Python Output Additions

The following additional cells are included only in Python notebooks.

Export Formats and Flags

By default, Otter Assign adds an initialization cell at the top of the notebook with the contents

Initialize Otter
import otter
grader = otter.Notebook()

To prevent this behavior, add the init_cell: false configuration in your assignment metadata.

Otter Assign also automatically adds a check-all cell and an export cell to the end of the notebook. The check-all cells
consist of a Markdown cell:

To double-check your work, the cell below will rerun all of the autograder tests.

and a code cell that calls otter.Notebook.check_all:

grader.check_all()

The export cells consist of a Markdown cell:

Submission

Make sure you have run all cells in your notebook in order before running the cell below,
→˓ so
that all images/graphs appear in the output. **Please save before submitting!**

and a code cell that calls otter.Notebook.export with HTML comment filtering:

Save your notebook first, then run this cell to export.
grader.export("/path/to/notebook.ipynb")

These behaviors can be changed with the corresponding assignment metadata configurations.

Note: Otter Assign currently only supports HTML comment filtering. This means that if you have other cells you want
included in the export, you must delimit them using HTML comments, not using cell tags.

Otter Assign Example

Consider the directory stucture below, where hw00/hw00.ipynb is an Otter Assign-formatted notebook.

hw00
data.csv
hw00.ipynb

To generate the distribution versions of hw00.ipynb (after changing into the hw00 directory), I would run

otter assign hw00.ipynb dist --v0

If it was an Rmd file instead, I would run

26 Chapter 3. Creating Assignments

Otter-Grader Documentation

otter assign hw00.Rmd dist --v0

This will create a new folder called dist with autograder and student as subdirectories, as described above.

hw00
data.csv
dist

autograder
hw00.ipynb
tests

q1.(py|R)
q2.(py|R) # etc.

student
hw00.ipynb
tests

q1.(py|R)
q2.(py|R) # etc.

hw00.ipynb

In generating the distribution versions, I can prevent Otter Assign from rerunning the tests using the --no-run-tests
flag:

otter assign --no-run-tests hw00.ipynb dist --v0

Because tests are not run on R notebooks, the above configuration would be ignored if hw00.ipynb had an R kernel.

3.2 Otter Assign Format v1

3.2.1 Notebook Format

Otter’s notebook format groups prompts, solutions, and tests together into questions. Autograder tests are specified
as cells in the notebook and their output is used as the expected output of the autograder when generating tests. Each
question has metadata, expressed in raw YAML config cell when the question is declared.

Note that the major difference between v0 format and v1 format is the use of raw notebook cells as delimiters. Each
boundary cell denotes the start or end of a block and contains valid YAML syntax. First-line comments are used in these
YAML raw cells to denote what type of block is being entered or ended.

In the v1 format, Python and R notebooks follow the same structure. There are some features available in Python
that are not available in R, and these are noted below, but otherwise the formats are the same.

Assignment Config

In addition to various command line arguments discussed below, Otter Assign also allows you to specify various assign-
ment generation arguments in an assignment config cell. These are very similar to the question config cells described in
the next section. Assignment config, included by convention as the first cell of the notebook, places YAML-formatted
configurations in a raw cell that begins with the comment # ASSIGNMENT CONFIG.

ASSIGNMENT CONFIG
init_cell: false
export_cell: true

(continues on next page)

3.2. Otter Assign Format v1 27

Otter-Grader Documentation

(continued from previous page)

generate: true
etc.

This cell is removed from both output notebooks. These configurations can be overwritten by their command line
counterparts (if present). The options, their defaults, and descriptions are listed below. Any unspecified keys will keep
their default values. For more information about many of these arguments, see Usage and Output. Any keys that map to
sub-dictionaries (e.g. export_cell, generate) can have their behaviors turned off by changing their value to false.
The only one that defaults to true (with the specified sub-key defaults) is export_cell.

name: null # a name for the assignment (to validate that␣
→˓students submit to the correct autograder)
config_file: null # path to a file containing assignment␣
→˓configurations; any configurations in this file are overridden by the in-notebook␣
→˓config
requirements: null # the path to a requirements.txt file or a list of␣
→˓packages
overwrite_requirements: false # whether to overwrite Otter's default requirement.
→˓txt in Otter Generate
environment: null # the path to a conda environment.yml file
run_tests: true # whether to run the assignment tests against the␣
→˓autograder notebook
solutions_pdf: false # whether to generate a PDF of the solutions notebook
template_pdf: false # whether to generate a filtered Gradescope␣
→˓assignment template PDF
init_cell: true # whether to include an Otter initialization cell in␣
→˓the output notebooks
check_all_cell: false # whether to include an Otter check-all cell in the␣
→˓output notebooks
export_cell: # whether to include an Otter export cell in the␣
→˓output notebooks
instructions: '' # additional submission instructions to include in␣

→˓the export cell
pdf: true # whether to include a PDF of the notebook in the␣

→˓generated zip file
filtering: true # whether the generated PDF should be filtered
force_save: false # whether to force-save the notebook with JavaScript␣

→˓(only works in classic notebook)
run_tests: true # whether to run student submissions against local␣

→˓tests during export
files: [] # a list of other files to include in the student␣

→˓submissions' zip file
seed: # intercell seeding configurations
variable: null # a variable name to override with the autograder␣

→˓seed during grading
autograder_value: null # the value of the autograder seed
student_value: null # the value of the student seed

generate: # grading configurations to be passed to Otter␣
→˓Generate as an otter_config.json; if false, Otter Generate is disabled
Default value: false
score_threshold: null # a score threshold for pass-fail assignments
points_possible: null # a custom total score for the assignment; if␣

→˓unspecified the sum of question point values is used.
(continues on next page)

28 Chapter 3. Creating Assignments

Otter-Grader Documentation

(continued from previous page)

show_stdout: false # whether to display the autograding process stdout␣
→˓to students on Gradescope
show_hidden: false # whether to display the results of hidden tests to␣

→˓students on Gradescope
show_all_public: false # whether to display all test results if all tests␣

→˓are public tests
seed: null # a random seed for intercell seeding
seed_variable: null # a variable name to override with the seed
grade_from_log: false # whether to re-assemble the student's environment␣

→˓from the log rather than by re-executing their submission
serialized_variables: null # a mapping of variable names to type strings for␣

→˓validating a deserialized student environment
pdf: false # whether to generate a PDF of the notebook when not␣

→˓using Gradescope auto-upload
token: null # a Gradescope token for uploading a PDF of the␣

→˓notebook
course_id: None # a Gradescope course ID for uploading a PDF of the␣

→˓notebook
assignment_id: None # a Gradescope assignment ID for uploading a PDF of␣

→˓the notebook
filtering: false # whether the generated PDF should have cells␣

→˓filtered out
pagebreaks: false # whether the generated PDF should have pagebreaks␣

→˓between filtered sections
debug: false # whether to run the autograder in debug mode␣

→˓(without ignoring errors)
autograder_dir: /autograder # the directory in which autograding is taking place
lang: python # the language of the assignment; one of {'python', 'r'}
miniconda_path: /root/miniconda3 # the path to the miniconda install directory
plugins: [] # a list of plugin names and configuration details␣

→˓for grading
logo: true # whether to print the Otter logo to stdout
print_summary: true # whether to print the grading summary
print_score: true # whether to print out the submission score in the␣

→˓grading summary
zips: false # whether zip files are being graded
log_level: null # a log level for logging messages; any value␣

→˓suitable for ``logging.Logger.setLevel``
channel_priority_strict: true # whether to set conda's channel_priority config to␣

→˓strict in the setup.sh file
assignment_name: null # a name for the assignment to ensure that students␣

→˓submit to the correct autograder
warn_missing_pdf: false # whether to add a 0-point public test to the␣

→˓Gradescope output to indicate to students whether a PDF was found/generated for this␣
→˓assignment
force_public_test_summary: true # whether to show a summary of public test case␣

→˓results when show_hidden is true
save_environment: false # whether to save the student's environment in the log
variables: null # a mapping of variable names to type strings for␣
→˓serializing environments
ignore_modules: [] # a list of modules to ignore variables from during␣
→˓environment serialization

(continues on next page)

3.2. Otter Assign Format v1 29

Otter-Grader Documentation

(continued from previous page)

files: [] # a list of other files to include in the output␣
→˓directories and autograder
autograder_files: [] # a list of other files only to include in the␣
→˓autograder
plugins: [] # a list of plugin names and configurations
tests: # information about the structure and storage of␣
→˓tests
files: false # whether to store tests in separate files, instead␣

→˓of the notebook metadata
ok_format: true # whether the test cases are in OK-format (instead␣

→˓of the exception-based format)
url_prefix: null # a URL prefix for where test files can be found for␣

→˓student use
show_question_points: false # whether to add the question point values to the␣
→˓last cell of each question
runs_on: default # the interpreter this notebook will be run on if␣
→˓different from the default interpreter (one of {'default', 'colab', 'jupyterlite'})
python_version: null # the version of Python to use in the grading image␣
→˓(must be 3.6+)

For assignments that share several common configurations, these can be specified in a separate YAML file whose path
is passed to the config_file key. When this key is encountered, Otter will read the file and load the configurations
defined therein into the assignment config for the notebook it’s running. Any keys specified in the notebook itself will
override values in the file.

ASSIGNMENT CONFIG
config_file: ../assignment_config.yml
files:

- data.csv

All paths specified in the configuration should be relative to the directory containing the master notebook. If, for
example, you were running Otter Assign on the lab00.ipynb notebook in the structure below:

dev
lab

lab00
data

data.csv
lab00.ipynb
utils.py

requirements.txt

and you wanted your requirements from dev/requirements.txt to be included, your configuration would look some-
thing like this:

requirements: ../../requirements.txt
files:

- data/data.csv
- utils.py

The requirements key of the assignment config can also be formatted as a list of package names in lieu of a path to a
requirements.txt file; for exmaple:

30 Chapter 3. Creating Assignments

Otter-Grader Documentation

requirements:
- pandas
- numpy
- scipy

This structure is also compatible with the overwrite_requirements key.

A note about Otter Generate: the generate key of the assignment config has two forms. If you just want to generate
and require no additional arguments, set generate: true in the YAML and Otter Assign will simply run otter
generate from the autograder directory (this will also include any files passed to files, whose paths should be rela-
tive to the directory containing the notebook, not to the directory of execution). If you require additional arguments,
e.g. points or show_stdout, then set generate to a nested dictionary of these parameters and their values:

generate:
seed: 42
show_stdout: true
show_hidden: true

You can also set the autograder up to automatically upload PDFs to student submissions to another Gradescope assign-
ment by setting the necessary keys under generate:

generate:
token: YOUR_TOKEN # optional
course_id: 1234 # required
assignment_id: 5678 # required
filtering: true # true is the default

You can run the following to retrieve your token:

from otter.generate.token import APIClient
print(APIClient.get_token())

If you don’t specify a token, you will be prompted for your username and password when you run Otter Assign; op-
tionally, you can specify these via the command line with the --username and --password flags.

Any configurations in your generate key will be put into an otter_config.json and used when running Otter
Generate.

If you are grading from the log or would like to store students’ environments in the log, use the save_environment key.
If this key is set to true, Otter will serialize the stuednt’s environment whenever a check is run, as described in Logging.
To restrict the serialization of variables to specific names and types, use the variables key, which maps variable names
to fully-qualified type strings. The ignore_modules key is used to ignore functions from specific modules. To turn
on grading from the log on Gradescope, set generate[grade_from_log] to true. The configuration below turns
on the serialization of environments, storing only variables of the name df that are pandas dataframes.

save_environment: true
variables:

df: pandas.core.frame.DataFrame

As an example, the following assignment config includes an export cell but no filtering, no init cell, and passes the
configurations points and seed to Otter Generate via the otter_config.json.

ASSIGNMENT CONFIG
export_cell:

filtering: false
(continues on next page)

3.2. Otter Assign Format v1 31

Otter-Grader Documentation

(continued from previous page)

init_cell: false
generate:

points: 3
seed: 0

You can also configure assignments created with Otter Assign to ensure that students submit to the correct assignment
by setting the name key in the assignment config. When this is set, Otter Assign adds the provided name to the notebook
metadata and the autograder configuration zip file; this configures the autograder to fail if the student uploads a notebook
with a different assignment name in the metadata.

ASSIGNMENT CONFIG
name: hw01

You can find more information about how Otter performs assignment name verification here.

By default, Otter’s grading images uses Python 3.7. If you need a different version, you can specify one using the
python_version config:

ASSIGNMENT CONFIG
python_version: 3.9

Intercell Seeding

Python assignments support intercell seeding, and there are two flavors of this. The first involves the use of a seed
variable, and is configured in the assignment config; this allows you to use tools like np.random.default_rng instead
of just np.random.seed. The second flavor involves comments in code cells, and is described below.

To use a seed variable, specify the name of the variable, the autograder seed value, and the student seed value in your
assignment config.

ASSIGNMENT CONFIG
seed:

variable: rng_seed
autograder_value: 42
student_value: 713

With this type of seeding, you do not need to specify the seed inside the generate key; this automatically taken care
of by Otter Assign.

Then, in a cell of your notebook, define the seed variable with the autograder value. This value needs to be defined in
a separate cell from any of its uses and the variable name cannot be used for anything other than seeding RNGs. This
is because it the variable will be redefined in the student’s submission at the top of every cell. We recommend defining
it in, for example, your imports cell.

import numpy as np
rng_seed = 42

To use the seed, just use the variable as normal:

rng = np.random.default_rng(rng_seed)
rvs = [rng.random() for _ in range(1000)] # SOLUTION

Or, in R:

32 Chapter 3. Creating Assignments

Otter-Grader Documentation

set.seed(rng_seed)
runif(1000)

If you use this method of intercell seeding, the solutions notebook will contain the original value of the seed, but the
student notebook will contain the student value:

from the student notebook
import numpy as np
rng_seed = 713

When you do this, Otter Generate will be configured to overwrite the seed variable in each submission, allowing intercell
seeding to function as normal.

Remember that the student seed is different from the autograder seed, so any public tests cannot be deterministic
otherwise they will fail on the student’s machine. Also note that only one seed is available, so each RNG must use the
same seed.

You can find more information about intercell seeding here.

Autograded Questions

Here is an example question in an Otter Assign-formatted question:

Note the use of the delimiting raw cells and the placement of question config in the # BEGIN QUESTION cell. The
question config can contain the following fields (in any order):

name: null # (required) the path to a requirements.txt file
manual: false # whether this is a manually-graded question
points: null # how many points this question is worth; defaults to 1 internally
check_cell: true # whether to include a check cell after this question (for autograded␣
→˓questions only)
export: false # whether to force-include this question in the exported PDF

As an example, the question config below indicates an autograded question q1 that should be included in the filtered
PDF.

BEGIN QUESTION
name: q1
export: true

Solution Removal

Solution cells contain code formatted in such a way that the assign parser replaces lines or portions of lines with
prespecified prompts. Otter uses the same solution replacement rules as jAssign. From the jAssign docs:

• A line ending in # SOLUTION will be replaced by ... (or NULL # YOUR CODE HERE in R), properly indented.
If that line is an assignment statement, then only the expression(s) after the = symbol (or the <- symbol in R)
will be replaced.

• A line ending in # SOLUTION NO PROMPT or # SEED will be removed.

• A line # BEGIN SOLUTION or # BEGIN SOLUTION NO PROMPT must be paired with a later line # END
SOLUTION. All lines in between are replaced with ... (or # YOUR CODE HERE in R) or removed completely
in the case of NO PROMPT.

3.2. Otter Assign Format v1 33

https://github.com/okpy/jassign/blob/master/docs/notebook-format.md

Otter-Grader Documentation

• A line """ # BEGIN PROMPT must be paired with a later line """ # END PROMPT. The contents of this mul-
tiline string (excluding the # BEGIN PROMPT) appears in the student cell. Single or double quotes are allowed.
Optionally, a semicolon can be used to suppress output: """; # END PROMPT

def square(x):
y = x * x # SOLUTION NO PROMPT
return y # SOLUTION

nine = square(3) # SOLUTION

would be presented to students as

def square(x):
...

nine = ...

And

pi = 3.14
if True:

BEGIN SOLUTION
radius = 3
area = radius * pi * pi
END SOLUTION
print('A circle with radius', radius, 'has area', area)

def circumference(r):
BEGIN SOLUTION NO PROMPT
return 2 * pi * r
END SOLUTION
""" # BEGIN PROMPT
Next, define a circumference function.
pass
"""; # END PROMPT

would be presented to students as

pi = 3.14
if True:

...
print('A circle with radius', radius, 'has area', area)

def circumference(r):
Next, define a circumference function.
pass

For R,

BEGIN SOLUTION
square <- function(x) {

return(x ^ 2)
}
END SOLUTION
x2 <- square(25)

34 Chapter 3. Creating Assignments

Otter-Grader Documentation

would be presented to students as

...
x2 <- square(25)

Test Cells

Any cells within the # BEGIN TESTS and # END TESTS boundary cells are considered test cells. Each test cell corre-
sponds to a single test case. There are two types of tests: public and hidden tests. Tests are public by default but can be
hidden by adding the # HIDDEN comment as the first line of the cell. A hidden test is not distributed to students, but is
used for scoring their work.

Test cells also support test case-level metadata. If your test requires metadata beyond whether the test is hidden or not,
specify the test by including a mutliline string at the top of the cell that includes YAML-formatted test config. For
example,

""" # BEGIN TEST CONFIG
points: 1
success_message: Good job!
""" # END TEST CONFIG
... # your test goes here

The test config supports the following keys with the defaults specified below:

hidden: false # whether the test is hidden
points: null # the point value of the test
success_message: null # a messsge to show to the student when the test case passes
failure_message: null # a messsge to show to the student when the test case fails

Because points can be specified at the question level and at the test case level, Otter will resolve the point value of each
test case as described here.

If a question has no solution cell provided, the question will either be removed from the output notebook entirely if
it has only hidden tests or will be replaced with an unprompted Notebook.check cell that runs those tests. In either
case, the test files are written, but this provides a way of defining additional test cases that do not have public versions.
Note, however, that the lack of a Notebook.check cell for questions with only hidden tests means that the tests are
run at the end of execution, and therefore are not robust to variable name collisions.

Because Otter supports two different types of test files, test cells can be written in two different ways.

OK-Formatted Test Cells

To use OK-formatted tests, which are the default for Otter Assign, you can write the test code in a test cell; Otter Assign
will parse the output of the cell to write a doctest for the question, which will be used for the test case. Make sure that
only the last line of the cell produces any output, otherwise the test will fail.

3.2. Otter Assign Format v1 35

Otter-Grader Documentation

Exception-Based Test Cells

To use Otter’s exception-based tests, you must set tests: ok_format: false in your assignment config. Your
test cells should define a test case function as described here. You can run the test in the master notebook by calling
the function, but you should make sure that this call is “ignored” by Otter Assign so that it’s not included in the test file
by appending # IGNORE to the end of line. You should not add the test_case decorator; Otter Assign will do this for
you.

For example,

""" # BEGIN TEST CONFIG
points: 0.5
""" # END TEST CONFIG
def test_validity(arr):

assert len(arr) == 10
assert (0 <= arr <= 1).all()

test_validity(arr) # IGNORE

It is important to note that the exception-based test files are executed before the student’s global environment is provided,
so no work should be performed outside the test case function that relies on student code, and any libraries or other
variables declared in the student’s environment must be passed in as arguments, otherwise the test will fail.

For example,

def test_values(arr):
assert np.allclose(arr, [1.2, 3.4, 5.6]) # this will fail, because np is not in the␣

→˓test file

def test_values(np, arr):
assert np.allclose(arr, [1.2, 3.4, 5.6]) # this works

def test_values(env):
assert env["np"].allclose(env["arr"], [1.2, 3.4, 5.6]) # this also works

R Test Cells

Test cells in R notebooks are like a cross between exception-based test cells and OK-formatted test cells: the checks in
the cell do not need to be wrapped in a function, but the passing or failing of the test is determined by whether it raises
an error, not by checking the output. For example,

. = " # BEGIN TEST CONFIG
hidden: true
points: 1
" # END TEST CONFIG
testthat::expect_equal(sieve(3), c(2, 3))

36 Chapter 3. Creating Assignments

Otter-Grader Documentation

Intercell Seeding

The second flavor of intercell seeding involves writing a line that ends with # SEED; when Otter Assign runs, this line
will be removed from the student version of the notebook. This allows instructors to write code with deterministic
output, with which hidden tests can be generated.

For example, the first line of the cell below would be removed in the student version of the notebook.

np.random.seed(42) # SEED
rvs = [np.random.random() for _ in range(1000)] # SOLUTION

The same caveats apply for this type of seeding as above.

R Example

Here is an example autograded question for R:

Manually-Graded Questions

Otter Assign also supports manually-graded questions using a similar specification to the one described above. To
indicate a manually-graded question, set manual: true in the question config.

A manually-graded question can have an optional prompt block and a required solution block. If the solution has any
code cells, they will have their syntax transformed by the solution removal rules listed above.

If there is a prompt for manually-graded questions, then this prompt is included unchanged in the output. If
none is present, Otter Assign automatically adds a Markdown cell with the contents _Type your answer here,
replacing this text._ if the solution block has any Markdown cells in it.

Here is an example of a manually-graded code question:

Manually graded questions are automatically enclosed in <!-- BEGIN QUESTION --> and <!-- END QUESTION
--> tags by Otter Assign so that only these questions are exported to the PDF when filtering is turned on (the default).
In the autograder notebook, this includes the question cell, prompt cell, and solution cell. In the student notebook, this
includes only the question and prompt cells. The <!-- END QUESTION --> tag is automatically inserted at the top of
the next cell if it is a Markdown cell or in a new Markdown cell before the next cell if it is not.

Ignoring Cells

For any cells that you don’t want to be included in either of the output notebooks that are present in the master notebook,
include a line at the top of the cell with the ## Ignore ## comment (case insensitive) just like with test cells. Note
that this also works for Markdown cells with the same syntax.

Ignore
print("This cell won't appear in the output.")

3.2. Otter Assign Format v1 37

Otter-Grader Documentation

Student-Facing Plugins

Otter supports student-facing plugin events via the otter.Notebook.run_plugin method. To include a student-
facing plugin call in the resulting versions of your master notebook, add a multiline plugin config string to a code cell
of your choosing. The plugin config should be YAML-formatted as a mutliline comment-delimited string, similar to
the solution and prompt blocks above. The comments # BEGIN PLUGIN and # END PLUGIN should be used on the
lines with the triple-quotes to delimit the YAML’s boundaries. There is one required configuration: the plugin name,
which should be a fully-qualified importable string that evaluates to a plugin that inherits from otter.plugins.
AbstractOtterPlugin.

There are two optional configurations: args and kwargs. args should be a list of additional arguments to pass to the
plugin. These will be left unquoted as-is, so you can pass variables in the notebook to the plugin just by listing them.
kwargs should be a dictionary that mappins keyword argument names to values; thse will also be added to the call in
key=value format.

Here is an example of plugin replacement in Otter Assign:

Note that student-facing plugins are not supported with R assignments.

Running on Non-standard Python Environments

For non-standard Python notebook environments (which use their own interpreters, such as Colab or Jupyterlite), some
Otter features are disabled and the the notebooks that are produced for running on those environments are slightly
different. To indicate that the notebook produce by Otter Assign is going to be run in such an environment, use the
runs_on assignment configuration. It currently supports these values:

• default, indicating a normal IPython environment (the default value)

• colab, indicating that the notebook will be used on Google Colab

• jupyterlite, indicating that the notebook will be used on Jupyterlite (or any environment using the Pyolite
kernel)

Sample Notebook

You can find a sample Python notebook here.

3.2.2 R Markdown Format

Otter Assign is compatible with Otter’s R autograding system and currently supports Jupyter notebook and R Markdown
master documents. The format for using Otter Assign with R is very similar to the Python format with a few important
differences. The main difference is that, where in the notebook format you would use raw cells, in R Markdown files
you wrap what would normally be in a raw cell in an HTML comment.

For example, a # BEGIN TESTS cell in R Markdown looks like:

<!-- # BEGIN TESTS -->

For cells that contain YAML configurations, you can use a multiline comment:

<!--
BEGIN QUESTION
name: q1
-->

38 Chapter 3. Creating Assignments

https://github.com/ucbds-infra/otter-grader/blob/master/docs/_static/notebooks/assign-full-example-v1.ipynb

Otter-Grader Documentation

Assignment Config

As with Python, Otter Assign for R Markdown also allows you to specify various assignment generation arguments in
an assignment config comment:

<!--
ASSIGNMENT CONFIG
init_cell: false
export_cell: true
generate: true
etc.
-->

You can find a list of available metadata keys and their defaults in the notebook format section.

Autograded Questions

Here is an example question in an Otter Assign-formatted R Markdown question:

<!--
BEGIN QUESTION
name: q1
manual: false
points:

- 1
- 1

-->

Question 1: Find the radius of a circle that has a 90 deg. arc of length 2. Assign␣
→˓this
value to `ans.1`

<!-- # BEGIN SOLUTION -->

```{r}
ans.1 <- 2 * 2 * pi * 2 / pi / pi / 2 # SOLUTION
```

<!-- # END SOLUTION -->

<!-- # BEGIN TESTS -->

```{r}
expect_true(ans.1 > 1)
expect_true(ans.1 < 2)
```

```{r}
# HIDDEN
tol = 1e-5
actual_answer = 1.27324
expect_true(ans.1 > actual_answer - tol)
expect_true(ans.1 < actual_answer + tol)

(continues on next page)

3.2. Otter Assign Format v1 39



Otter-Grader Documentation

(continued from previous page)

```

<!-- # END TESTS -->

<!-- # END QUESTION -->

For code questions, a question is a some description markup, followed by a solution code blocks and zero or more
test code blocks. The blocks should be wrapped in HTML comments following the same structure as the notebook
autograded question. The question config has the same keys as the notebook question config.

As an example, the question config below indicates an autograded question q1 with 3 subparts worth 1, 2, and 1 points,
resp.

<!--
BEGIN QUESTION
name: q1
points:

- 1
- 2
- 1

-->

Solution Removal

Solution cells contain code formatted in such a way that the assign parser replaces lines or portions of lines with
pre-specified prompts. The format for solution cells in Rmd files is the same as in Python and R Jupyter notebooks,
described here. Otter Assign’s solution removal for prompts is compatible with normal strings in R, including assigning
these to a dummy variable so that there is no undesired output below the cell:

this is OK:
. = " # BEGIN PROMPT
some.var <- ...
" # END PROMPT

Test Cells

Any cells within the # BEGIN TESTS and # END TESTS boundary cells are considered test cells. There are two types
of tests: public and hidden tests. Tests are public by default but can be hidden by adding the # HIDDEN comment as
the first line of the cell. A hidden test is not distributed to students, but is used for scoring their work.

When writing tests, each test cell maps to a single test case and should raise an error if the test fails. The removal
behavior regarding questions with no solution provided holds for R Markdown files.

testthat::expect_true(some_bool)

testthat::expect_equal(some_value, 1.04)

As with notebooks, test cells also support test config blocks; for more information on these, see R Test Cells.

40 Chapter 3. Creating Assignments

Otter-Grader Documentation

Manually-Graded Questions

Otter Assign also supports manually-graded questions using a similar specification to the one described above. To
indicate a manually-graded question, set manual: true in the question config. A manually-graded question is defined
by three parts:

• a question config

• (optionally) a prompt

• a solution

Manually-graded solution cells have two formats:

• If the response is code (e.g. making a plot), they can be delimited by solution removal syntax as above.

• If the response is markup, the the solution should be wrapped in special HTML comments (see below) to indicate
removal in the sanitized version.

To delimit a markup solution to a manual question, wrap the solution in the HTML comments <!-- # BEGIN
SOLUTION --> and <!-- # END SOLUTION --> on their own lines to indicate that the content in between should be
removed.

<!-- # BEGIN SOLUTION -->

solution goes here

<!-- # END SOLUTION -->

To use a custom Markdown prompt, include a <!-- # BEGIN/END PROMPT --> block with a solution block:

<!-- # BEGIN PROMPT -->

prompt goes here

<!-- # END PROMPT -->

<!-- # BEGIN SOLUTION -->

solution goes here

<!-- # END SOLUTION -->

If no prompt is provided, Otter Assign automatically replaces the solution with a line containing _Type your answer
here, replacing this text._.

An example of a manually-graded code question:

<!--
BEGIN QUESTION
name: q7
manual: true
-->

Question 7: Plot $f(x) = \cos e^x$ on $[0,10]$.

<!-- # BEGIN SOLUTION -->

(continues on next page)

3.2. Otter Assign Format v1 41

Otter-Grader Documentation

(continued from previous page)

```{r}
# BEGIN SOLUTION
x = seq(0, 10, 0.01)
y = cos(exp(x))
ggplot(data.frame(x, y), aes(x=x, y=y)) +

geom_line()
# END SOLUTION
```

<!-- # END SOLUTION -->

<!-- # END QUESTION -->

An example of a manually-graded written question (with no prompt):

<!--
BEGIN QUESTION
name: q5
manual: true
-->

Question 5: Simplify $\sum_{i=1}^n n$.

<!-- # BEGIN SOLUTION -->

$\frac{n(n+1)}{2}$

<!-- # END SOLUTION -->

<!-- # END QUESTION -->

An example of a manually-graded written question with a custom prompt:

<!--
BEGIN QUESTION
name: q6
manual: true
-->

Question 6: Fill in the blank.

<!-- # BEGIN PROMPT -->

The mitochondria is the ___________ of the cell.

<!-- # END PROMPT -->

<!-- # BEGIN SOLUTION-->

powerhouse

<!-- # END SOLUTION -->
(continues on next page)

42 Chapter 3. Creating Assignments

Otter-Grader Documentation

(continued from previous page)

<!-- # END QUESTION -->

3.2.3 Usage and Output

Otter Assign is called using the otter assign command. This command takes in two required arguments. The first is
master, the path to the master notebook (the one formatted as described above), and the second is result, the path at
which output shoud be written. Otter Assign will automatically recognize the language of the notebook by looking
at the kernel metadata; similarly, if using an Rmd file, it will automatically choose the language as R. This behavior
can be overridden using the -l flag which takes the name of the language as its argument.

The default behavior of Otter Assign is to do the following:

1. Filter test cells from the master notebook and write these to test files

2. Add Otter initialization, export, and Notebook.check_all cells

3. Clear outputs and write questions (with metadata hidden), prompts, and solutions to a notebook in a new
autograder directory

4. Write all tests to autograder/tests

5. Copy autograder notebook with solutions removed into a new student directory

6. Write public tests to student/tests

7. Copy files into autograder and student directories

8. Run all tests in autograder/tests on the solutions notebook to ensure they pass

9. (If generate is passed,) generate a Gradescope autograder zipfile from the autograder directory

The behaviors described in step 2 can be overridden using the optional arguments described in the help specification.

An important note: make sure that you run all cells in the master notebook and save it with the outputs so that Otter
Assign can generate the test files based on these outputs. The outputs will be cleared in the copies generated by Otter
Assign.

Python Output Additions

The following additional cells are included only in Python notebooks.

Export Formats and Flags

By default, Otter Assign adds an initialization cell at the top of the notebook with the contents

Initialize Otter
import otter
grader = otter.Notebook()

To prevent this behavior, add the init_cell: false configuration in your assignment metadata.

Otter Assign also automatically adds a check-all cell and an export cell to the end of the notebook. The check-all cells
consist of a Markdown cell:

3.2. Otter Assign Format v1 43

Otter-Grader Documentation

To double-check your work, the cell below will rerun all of the autograder tests.

and a code cell that calls otter.Notebook.check_all:

grader.check_all()

The export cells consist of a Markdown cell:

Submission

Make sure you have run all cells in your notebook in order before running the cell below,
→˓ so
that all images/graphs appear in the output. **Please save before submitting!**

and a code cell that calls otter.Notebook.export with HTML comment filtering:

Save your notebook first, then run this cell to export.
grader.export("/path/to/notebook.ipynb")

For R assignments, the export cell looks like:

Save your notebook first, then run this cell to export.
ottr::export("/path/to/notebook.ipynb")

These behaviors can be changed with the corresponding assignment metadata configurations.

Note: Otter Assign currently only supports HTML comment filtering. This means that if you have other cells you want
included in the export, you must delimit them using HTML comments, not using cell tags.

Otter Assign Example

Consider the directory stucture below, where hw00/hw00.ipynb is an Otter Assign-formatted notebook.

hw00
data.csv
hw00.ipynb

To generate the distribution versions of hw00.ipynb (after changing into the hw00 directory), you would run

otter assign hw00.ipynb dist

If it was an Rmd file instead, you would run

otter assign hw00.Rmd dist

This will create a new folder called dist with autograder and student as subdirectories, as described above.

hw00
data.csv
dist

autograder
hw00.ipynb
tests

q1.(py|R)
(continues on next page)

44 Chapter 3. Creating Assignments

Otter-Grader Documentation

(continued from previous page)

q2.(py|R) # etc.
student

hw00.ipynb
tests

q1.(py|R)
q2.(py|R) # etc.

hw00.ipynb

In generating the distribution versions, you can prevent Otter Assign from rerunning the tests using the
--no-run-tests flag:

otter assign --no-run-tests hw00.ipynb dist

Because tests are not run on R notebooks, the above flag would be ignored if hw00.ipynb had an R kernel.

Otter ships with an assignment development and distribution tool called Otter Assign, an Otter-compliant fork of jAs-
sign that was designed for OkPy. Otter Assign allows instructors to create assignments by writing questions, prompts,
solutions, and public and private tests all in a single notebook, which is then parsed and broken down into student and
autograder versions.

Otter Assign currently supports two notebook formats: format v0, the original master notebook format, and format
v1, which was released with Otter-Grader v3. Format v0 is currently the default format option but v1 will become the
default in Otter-Grader v4.

otter assign lab00.ipynb dist

3.3 Converting to v1

Otter includes a tool that will help you convert a v0-formatted notebook to v1 format. To convert a notebook, use the
module otter.assign.v0.convert from the Python CLI. This tool takes two position arguments: the path to the
original notebook and the path at which to write the new notebook. For example,

python3 -m otter.assign.v0.convert lab01.ipynb lab01-v1.ipynb

3.3. Converting to v1 45

https://github.com/okpy/jassign
https://github.com/okpy/jassign

Otter-Grader Documentation

46 Chapter 3. Creating Assignments

CHAPTER

FOUR

STUDENT USAGE

4.1 Otter Configuration Files

In many use cases, the use of the otter.Notebook class by students requires some configurations to be set. These
configurations are stored in a simple JSON-formatted file ending in the .otter extension. When otter.Notebook
is instantiated, it globs all .otter files in the working directory and, if any are present, asserts that there is only 1
and loads this as the configuration. If no .otter config is found, it is assumed that there is no configuration file and,
therefore, only features that don’t require a config file are available.

The available keys in a .otter file are listed below, along with their default values. The only required key is notebook
(i.e. if you use .otter file it must specify a value for notebook).

{
"notebook": "", # the notebook filename
"save_environment": false, # whether to serialize the environment in the log during␣

→˓checks
"ignore_modules": [], # a list of modules whose functions to ignore during␣

→˓serialization
"variables": {} # a mapping of variable names -> types to resitrct during␣

→˓serialization
}

4.1.1 Configuring the Serialization of Environments

If you are using logs to grade assignemtns from serialized environments, the save_environment key must be set
to true. Any module names in the ignore_modules list will have their functions ignored during serialization. If
variables is specified, it should be a dictionary mapping variables names to fully-qualified types; variables will only
be serialized if they are present as keys in this dictionary and their type matches the specified type. An example of this
use would be:

{
"notebook": "hw00.ipynb",
"save_environment": true,
"variables": {

"df": "pandas.core.frame.DataFrame",
"fn": "builtins.function",
"arr": "numpy.ndarray"

}
}

The function otter.utils.get_variable_typewhen called on an object will return this fully-qualified type string.

47

Otter-Grader Documentation

In [1]: from otter.utils import get_variable_type

In [2]: import numpy as np

In [3]: import pandas as pd

In [4]: get_variable_type(np.array([]))
Out[4]: 'numpy.ndarray'

In [5]: get_variable_type(pd.DataFrame())
Out[5]: 'pandas.core.frame.DataFrame'

In [6]: fn = lambda x: x

In [7]: get_variable_type(fn)
Out[7]: 'builtins.function'

More information about grading from serialized environments can be found in Logging.

Otter provides an IPython API and a command line tool that allow students to run checks and export notebooks within
the assignment environment.

4.2 The Notebook API

Otter supports in-notebook checks so that students can check their progress when working through assignments via the
otter.Notebook class. The Notebook takes one optional parameter that corresponds to the path from the current
working directory to the directory of tests; the default for this path is ./tests.

import otter
grader = otter.Notebook()

If my tests were in ./hw00-tests, then I would instantiate with

grader = otter.Notebook("hw00-tests")

Students can run tests in the test directory using Notebook.check which takes in a question identifier (the file name
without the .py extension). For example,

grader.check("q1")

will run the test q1.py in the tests directory. If a test passes, then the cell displays “All tests passed!” If the test fails,
then the details of the first failing test are printed out, including the test code, expected output, and actual output:

48 Chapter 4. Student Usage

Otter-Grader Documentation

Students can also run all tests in the tests directory at once using Notebook.check_all:

grader.check_all()

This will rerun all tests against the current global environment and display the results for each tests concatenated into
a single HTML output. It is recommended that this cell is put at the end of a notebook for students to run before they
submit so that students can ensure that there are no variable name collisions, propagating errors, or other things that
would cause the autograder to fail a test they should be passing.

4.2. The Notebook API 49

images/student_usage_failed_test.png

Otter-Grader Documentation

4.2.1 Exporting Submissions

Students can also use the Notebook class to generate their own PDFs for manual grading using the method Notebook.
export. This function takes an optional argument of the path to the notebook; if unspecified, it will infer the path by
trying to read the config file (if present), using the path of the only notebook in the working directory if there is only
one, or it will raise an error telling you to provide the path. This method creates a submission zip file that includes the
notebook file, the log, and, optionally, a PDF of the notebook (set pdf=False to disable this last).

As an example, if I wanted to export hw01.ipynb with cell filtering, my call would be

grader.export("hw01.ipynb")

as filtering is by defult on. If I instead wanted no filtering, I would use

grader.export("hw01.ipynb", filtering=False)

To generate just a PDF of the notebook, use Notebook.to_pdf.

4.2.2 Running on Non-standard Python Environments

When running on non-standard Python notebook environments (which use their own interpreters, such as Colab or
Jupyterlite), some Otter features are disabled due differences in file system access, the unavailability of compatible
versions of packages, etc. When you instantiate a Notebook, Otter automatically tries to determine if you’re running
on one of these environments, but you can manually indicate which you’re running on by setting either the colab or
jupyterlite argument to True.

4.3 Command Line Script Checker

Otter also features a command line tool that allows students to run checks on Python files from the command line.
otter check takes one required argument, the path to the file that is being checked, and three optional flags:

• -t is the path to the directory of tests. If left unspecified, it is assumed to be ./tests

• -q is the identifier of a specific question to check (the file name without the .py extension). If left unspecified,
all tests in the tests directory are run.

• --seed is an optional random seed for execution seeding

The recommended file structure for using the checker is something like the one below:

hw00
hw00.py
tests

q1.py
q2.py # etc.

After a cd into hw00, if I wanted to run the test q2.py, I would run

$ otter check hw00.py -q q2
All tests passed!

In the example above, I passed all of the tests. If I had failed any of them, I would get an output like that below:

50 Chapter 4. Student Usage

Otter-Grader Documentation

$ otter check hw00.py -q q2
1 of 2 tests passed

Tests passed:
possible

Tests failed:

Line 2, in tests/q2.py 0
Failed example:

1 == 1
Expected:

False
Got:

True

To run all tests at once, I would run

$ otter check hw00.py
Tests passed:

q1 q3 q4 q5

Tests failed:

Line 2, in tests/q2.py 0
Failed example:

1 == 1
Expected:

False
Got:

True

As you can see, I passed for of the five tests above, and filed q2.py.

If I instead had the directory structure below (note the new tests directory name)

hw00
hw00.py
hw00-tests

q1.py
q2.py # etc.

then all of my commands would be changed by adding -t hw00-tests to each call. As an example, let’s rerun all of
the tests again:

$ otter check hw00.py -t hw00-tests
Tests passed:

q1 q3 q4 q5

Tests failed:

(continues on next page)

4.3. Command Line Script Checker 51

Otter-Grader Documentation

(continued from previous page)

Line 2, in hw00-tests/q2.py 0
Failed example:

1 == 1
Expected:

False
Got:

True

4.4 otter.Notebook Reference

class otter.check.notebook.Notebook(nb_path=None, tests_dir='./tests', tests_url_prefix=None,
colab=None, jupyterlite=None)

Notebook class for in-notebook autograding

Parameters

• nb_path (str, optional) – path to the notebook being run

• tests_dir (str, optional) – path to tests directory

• colab (bool, optional) – whether this notebook is being run on Google Colab; if None, this
information is automatically parsed from IPython on creation

• jupyterlite (bool, optional) – whether this notebook is being run on JupyterLite; if None,
this information is automatically parsed from IPython on creation

add_plugin_files(plugin_name, *args, nb_path=None, **kwargs)
Runs the notebook_export event of the plugin plugin_name and tracks the file paths it returns to be
included when calling Notebook.export.

Parameters

• plugin_name (str) – importable name of an Otter plugin that implements the
from_notebook hook

• *args – arguments to be passed to the plugin

• nb_path (str, optional) – path to the notebook

• **kwargs – keyword arguments to be passed to the plugin

check(question, global_env=None)
Runs tests for a specific question against a global environment. If no global environment is provided, the
test is run against the calling frame’s environment.

Parameters

• question (str) – name of question being graded

• global_env (dict, optional) – global environment resulting from execution of a single
notebook

Returns the grade for the question

Return type otter.test_files.abstract_test.TestFile

52 Chapter 4. Student Usage

Otter-Grader Documentation

check_all()

Runs all tests on this notebook. Tests are run against the current global environment, so any tests with
variable name collisions will fail.

export(nb_path=None, export_path=None, pdf=True, filtering=True, pagebreaks=True, files=[],
display_link=True, force_save=False, run_tests=False)

Exports a submission to a zip file. Creates a submission zipfile from a notebook at nb_path, optionally
including a PDF export of the notebook and any files in files.

Parameters

• nb_path (str, optional) – path to the notebook we want to export; will attempt to infer if
not provided

• export_path (str, optional) – path at which to write zipfile; defaults to notebook’s name
+ .zip

• pdf (bool, optional) – whether a PDF should be included

• filtering (bool, optional) – whether the PDF should be filtered; ignored if pdf is False

• pagebreaks (bool, optional) – whether pagebreaks should be included between questions
in the PDF

• files (list of str, optional) – paths to other files to include in the zip file

• display_link (bool, optional) – whether or not to display a download link

• force_save (bool, optional) – whether or not to display JavaScript that force-saves the
notebook (only works in Jupyter Notebook classic, not JupyterLab)

classmethod grading_mode(tests_dir)
A context manager for the Notebook grading mode. Yields a pointer to the list of results that will be
populated during grading.

It is the caller’s responsibility to maintain the pointer. The pointer in the Checker class will be over-
written when the context exits.

run_plugin(plugin_name, *args, nb_path=None, **kwargs)
Runs the plugin plugin_name with the specified arguments. Use nb_path if the path to the notebook is
not configured.

Parameters

• plugin_name (str) – importable name of an Otter plugin that implements the
from_notebook hook

• *args – arguments to be passed to the plugin

• nb_path (str, optional) – path to the notebook

• **kwargs – keyword arguments to be passed to the plugin

to_pdf(nb_path=None, filtering=True, pagebreaks=True, display_link=True, force_save=False)
Exports a notebook to a PDF using Otter Export

Parameters

• nb_path (str, optional) – path to the notebook we want to export; will attempt to infer if
not provided

• filtering (bool, optional) – set true if only exporting a subset of notebook cells to PDF

• pagebreaks (bool, optional) – if true, pagebreaks are included between questions

4.4. otter.Notebook Reference 53

Otter-Grader Documentation

• display_link (bool, optional) – whether or not to display a download link

• force_save (bool, optional) – whether or not to display JavaScript that force-saves the
notebook (only works in Jupyter Notebook classic, not JupyterLab)

54 Chapter 4. Student Usage

CHAPTER

FIVE

GRADING WORKFLOW

5.1 Generating Configuration Files

5.1.1 Grading Container Image

When you use Otter Generate to create the configuration zip file for Gradescope, Otter includes the following software
and packages for installation. The zip archive, when unzipped, has the following contents:

autograder
environment.yml
files/
otter_config.json
requirements.r
requirements.txt
run_autograder
run_otter.py
setup.sh
tests/

Note that for pure-Python assignments, requirements.r is not included and all of the R-pertinent portions of setup.
sh are removed. Below are descriptions of each of the items listed above and the Jinja2 templates used to create them
(if applicable).

setup.sh

This file, required by Gradescope, performs the installation of necessary software for the autograder to run. The script
template looks like this:

#!/usr/bin/env bash

if ["${BASE_IMAGE}" != "ucbdsinfra/otter-grader"]; then
apt-get clean
apt-get update
apt-get install -y pandoc texlive-xetex texlive-fonts-recommended texlive-plain-

→˓generic build-essential libcurl4-gnutls-dev libxml2-dev libssl-dev libgit2-dev texlive-
→˓lang-chinese

apt-get install -y libnlopt-dev cmake libfreetype6-dev libpng-dev libtiff5-dev␣
→˓libjpeg-dev apt-utils libpoppler-cpp-dev libavfilter-dev libharfbuzz-dev libfribidi-
→˓dev imagemagick libmagick++-dev pandoc texlive-xetex texlive-fonts-recommended texlive-
→˓plain-generic build-essential libcurl4-gnutls-dev libxml2-dev libssl-dev libgit2-dev␣
→˓texlive-lang-chinese libxft-dev (continues on next page)

55

Otter-Grader Documentation

(continued from previous page)

install wkhtmltopdf
wget --quiet -O /tmp/libssl1.1.deb http://archive.ubuntu.com/ubuntu/pool/main/o/

→˓openssl/libssl1.1_1.1.1-1ubuntu2.1~18.04.20_amd64.deb
apt-get install -y /tmp/libssl1.1.deb
wget --quiet -O /tmp/wkhtmltopdf.deb https://github.com/wkhtmltopdf/packaging/

→˓releases/download/0.12.6-1/wkhtmltox_0.12.6-1.bionic_amd64.deb
apt-get install -y /tmp/wkhtmltopdf.deb

try to set up R
apt-get clean
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys␣

→˓E298A3A825C0D65DFD57CBB651716619E084DAB9
add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/'

install conda
wget -nv -O {{ autograder_dir }}/source/miniconda_install.sh "{{ miniconda_install_

→˓url }}"
chmod +x {{ autograder_dir }}/source/miniconda_install.sh
{{ autograder_dir }}/source/miniconda_install.sh -b
echo "export PATH=/root/miniconda3/bin:\$PATH" >> /root/.bashrc

export PATH=/root/miniconda3/bin:$PATH
export TAR="/bin/tar"

fi

install dependencies with conda
{% if channel_priority_strict %}conda config --set channel_priority strict
{% endif %}conda env create -f {{ autograder_dir }}/source/environment.yml
conda run -n {{ otter_env_name }} Rscript {{ autograder_dir }}/source/requirements.r

set conda shell
conda init --all

install ottr; not sure why it needs to happen twice but whatever
git clone --single-branch -b {{ ottr_branch }} https://github.com/ucbds-infra/ottr.git {
→˓{ autograder_dir }}/source/ottr
cd {{ autograder_dir }}/source/ottr
conda run -n {{ otter_env_name }} Rscript -e "devtools::install\\(\\)"
conda run -n {{ otter_env_name }} Rscript -e "devtools::install\\(\\)"

This script does the following:

1. Install Python 3.7 and pip

2. Install pandoc and LaTeX

3. Install wkhtmltopdf

4. Set Python 3.7 to the default python version

5. Install apt-get dependencies for R

6. Install Miniconda

7. Install R, r-essentials, and r-devtools from conda

56 Chapter 5. Grading Workflow

Otter-Grader Documentation

8. Install Python requirements from requirements.txt (this step installs Otter itself)

9. Install R requires from requirements.r

10. Install Otter’s R autograding package ottr

Currently this script is not customizable, but you can unzip the provided zip file to edit it manually.

environment.yml

This file specifies the conda environment that Otter creates in setup.sh. By default, it uses Python 3.7, but this can
be changed using the --python-version flag to Otter Generate.

{% if not other_environment %}name: {{ otter_env_name }}
channels:

- defaults
- conda-forge

dependencies:
- python={{ python_version }}
- pip
- nb_conda_kernels
- r-base>=4.0.0
- r-essentials
- r-devtools
- libgit2
- libgomp
- pip:

- -r requirements.txt{% else %}{{ other_environment }}{% endif %}

requirements.txt

This file contains the Python dependencies required to execute submissions. It is also the file that your re-
quirements are appended to when you provided your own requirements file for a Python assignment (unless
--overwrite-requirements is passed). The template requirements for Python are:

{% if not overwrite_requirements %}datascience
jupyter_client
ipykernel
matplotlib
pandas
ipywidgets
scipy
seaborn
scikit-learn
jinja2
nbconvert
nbformat
dill
numpy
gspread
google-api-python-client
google-auth-oauthlib
six

(continues on next page)

5.1. Generating Configuration Files 57

Otter-Grader Documentation

(continued from previous page)

otter-grader==4.4.0
{% endif %}{% if other_requirements %}
{{ other_requirements }}{% endif %}

If you are using R, there will be no additional requirements sent to this template, and rpy2 will be added. Note that
this installs the exact version of Otter that you are working from. This is important to ensure that the configurations
you set locally are correctly processed and processable by the version on the Gradescope container. If you choose to
overwrite the requirements, make sure to do the same.

requirements.r

This file uses R functions like install.packages and devtools::install_github to install R packages. If you
are creating an R assignment, it is this file (rather than requirements.txt) that your requirements and overwrite-
requirements options are applied to. The template file contains:

{% if not overwrite_requirements %}
install.packages(c(

"gert",
"usethis",
"testthat",
"startup",
"rmarkdown"

), dependencies=TRUE, repos="http://cran.us.r-project.org")

install.packages(
"stringi",
configure.args='--disable-pkg-config --with-extra-cxxflags="--std=c++11" --disable-

→˓cxx11',
repos="http://cran.us.r-project.org"

)
{% endif %}{% if other_requirements %}
{{ other_requirements }}
{% endif %}

run_autograder

This is the file that Gradescope uses to actually run the autograder when a student submits. Otter provides this file as
an executable that activates the conda environment and then calls /autograder/source/run_otter.py:

#!/usr/bin/env bash
if ["${BASE_IMAGE}" != "ucbdsinfra/otter-grader"]; then

export PATH="/root/miniconda3/bin:$PATH"
source /root/miniconda3/etc/profile.d/conda.sh

else
export PATH="/opt/conda/bin:$PATH"
source /opt/conda/etc/profile.d/conda.sh

fi
conda activate {{ otter_env_name }}
python {{ autograder_dir }}/source/run_otter.py

58 Chapter 5. Grading Workflow

Otter-Grader Documentation

run_otter.py

This file contains the logic to start the grading process by importing and running otter.run.run_autograder.main:

"""
Runs Otter on Gradescope
"""

import os
import subprocess

from otter.run.run_autograder import main as run_autograder

if __name__ == "__main__":
run_autograder('{{ autograder_dir }}')

otter_config.json

This file contains any user configurations for grading. It has no template but is populated with the default values and
any updates to those values that a user specifies. When debugging grading via SSH on Gradescope, a helpful tip is to
set the debug key of this JSON file to true; this will stop the autograding from ignoring errors when running students’
code, and can be helpful in debugging specific submission issues.

tests

This is a directory containing the test files that you provide. All .py (or .R) files in the tests directory path that you
provide are copied into this directory and are made available to submissions when the autograder runs.

files

This directory, not present in all autograder zip files, contains any support files that you provide to be made available
to submissions.

This section details how to generate the configuration files needed for preparing Otter autograders. Note that this step
can be accomplished automatically if you’re using Otter Assign.

To use Otter to autograde an assignment, you must first generate a zip file that Otter will use to create a Docker image
with which to grade submissions. Otter’s command line utility otter generate allows instructors to create this zip
file from their machines.

5.1.2 Before Using Otter Generate

Before using Otter Generate, you should already have written tests for the assignment and collected extra requirements
into a requirements.txt file (see here). (Note: the default requirements can be overwritten by your requirements by
passing the --overwrite-requirements flag.)

5.1. Generating Configuration Files 59

Otter-Grader Documentation

5.1.3 Directory Structure

For the rest of this page, assume that we have the following directory structure:

hw00-dev
data.csv
hidden-tests

q1.py
q2.py # etc.

hw00-sol.ipynb
hw00.ipynb
requirements.txt
tests

q1.py
q2.py # etc.

utils.py

Also assume that the working directory is hw00-dev.

5.1.4 Usage

The general usage of otter generate is to create a zip file at some output directory (-o flag, default ./) which you
will then use to create the grading image. Otter Generate has a few optional flags, described in the CLI Reference.

If you do not specify -t or -o, then the defaults will be used. If you do not specify -r, Otter looks in the working
directory for requirements.txt and automatically adds it if found; if it is not found, then it is assumed there are
no additional requirements. If you do not specify -e, Otter will use the default environment.yml. There is also an
optional positional argument that goes at the end of the command, files, that is a list of any files that are required for
the notebook to execute (e.g. data files, Python scripts). To autograde an R assignment, pass the -l r flag to indicate
that the language of the assignment is R.

The simplest usage in our example would be

otter generate

This would create a zip file autograder.zip with the tests in ./tests and no extra requirements or files. If we
needed data.csv in the notebook, our call would instead become

otter generate data.csv

Note that if we needed the requirements in requirements.txt, our call wouldn’t change, since Otter automatically
found ./requirements.txt.

Now let’s say that we maintained to different directories of tests: testswith public versions of tests and hidden-tests
with hidden versions. Because I want to grade with the hidden tests, my call then becomes

otter generate -t hidden-tests data.csv

Now let’s say that I need some functions defined in utils.py; then I would add this to the last part of my Otter Generate
call:

otter generate -t hidden-tests data.csv utils.py

If this was instead an R assignment, I would run

60 Chapter 5. Grading Workflow

Otter-Grader Documentation

otter generate -t hidden-tests -l r data.csv

5.1.5 Grading Configurations

There are several configurable behaviors that Otter supports during grading. Each has default values, but these can be
configured by creating an Otter config JSON file and passing the path to this file to the -c flag (./otter_config.json
is automatically added if found and -c is unspecified).

The supported keys and their default values are configured in a fica configuration class (otter.run.
run_autograder.autograder_config.AutograderConfig). The available configurations are documented be-
low.

{
"score_threshold": null, // a score threshold for pass-fail assignments
"points_possible": null, // a custom total score for the assignment; if␣

→˓unspecified the sum of question point values is used.
"show_stdout": false, // whether to display the autograding process␣

→˓stdout to students on Gradescope
"show_hidden": false, // whether to display the results of hidden␣

→˓tests to students on Gradescope
"show_all_public": false, // whether to display all test results if all␣

→˓tests are public tests
"seed": null, // a random seed for intercell seeding
"seed_variable": null, // a variable name to override with the seed
"grade_from_log": false, // whether to re-assemble the student's␣

→˓environment from the log rather than by re-executing their submission
"serialized_variables": null, // a mapping of variable names to type strings␣

→˓for validating a deserialized student environment
"pdf": false, // whether to generate a PDF of the notebook␣

→˓when not using Gradescope auto-upload
"token": null, // a Gradescope token for uploading a PDF of␣

→˓the notebook
"course_id": "None", // a Gradescope course ID for uploading a PDF␣

→˓of the notebook
"assignment_id": "None", // a Gradescope assignment ID for uploading a␣

→˓PDF of the notebook
"filtering": false, // whether the generated PDF should have cells␣

→˓filtered out
"pagebreaks": false, // whether the generated PDF should have␣

→˓pagebreaks between filtered sections
"debug": false, // whether to run the autograder in debug mode␣

→˓(without ignoring errors)
"autograder_dir": "/autograder", // the directory in which autograding is taking␣

→˓place
"lang": "python", // the language of the assignment; one of {

→˓'python', 'r'}
"miniconda_path": "/root/miniconda3", // the path to the miniconda install directory
"plugins": [], // a list of plugin names and configuration␣

→˓details for grading
"logo": true, // whether to print the Otter logo to stdout
"print_summary": true, // whether to print the grading summary
"print_score": true, // whether to print out the submission score in␣

→˓the grading summary (continues on next page)

5.1. Generating Configuration Files 61

https://fica.readthedocs.io/

Otter-Grader Documentation

(continued from previous page)

"zips": false, // whether zip files are being graded
"log_level": null, // a log level for logging messages; any value␣

→˓suitable for ``logging.Logger.setLevel``
"channel_priority_strict": true, // whether to set conda's channel_priority␣

→˓config to strict in the setup.sh file
"assignment_name": null, // a name for the assignment to ensure that␣

→˓students submit to the correct autograder
"warn_missing_pdf": false, // whether to add a 0-point public test to the␣

→˓Gradescope output to indicate to students whether a PDF was found/generated for this␣
→˓assignment
"force_public_test_summary": true // whether to show a summary of public test␣

→˓case results when show_hidden is true
}

Grading with Environments

Otter can grade assignments using saved environments in the log in the Gradescope container. This behavior is not
supported for R assignments. This works by deserializing the environment stored in each check entry of Otter’s log and
grading against it. The notebook is parsed and only its import statements are executed. For more inforamtion about
saving and using environments, see Logging.

To configure this behavior, two things are required:

• the use of the grade_from_log key in your config JSON file

• providing studens with an Otter configuration file that has save_environments set to true

This will tell Otter to shelve the global environment each time a student calls Notebook.check (pruning the environ-
ments of old calls each time it is called on the same question). When the assignment is exported using Notebook.
export, the log file (at ./.OTTER_LOG) is also exported with the global environments. These environments are read
in in the Gradescope container and are then used for grading. Because one environment is saved for each check call,
variable name collisions can be averted, since each question is graded using the global environment at the time it was
checked. Note that any requirements needed for execution need to be installed in the Gradescope container, because
Otter’s shelving mechanism does not store module objects.

Autosubmission of Notebook PDFs

Otter Generate allows instructors to automatically generate PDFs of students’ notebooks and upload these as submis-
sions to a separate Gradescope assignment. This requires a Gradescope token or entering your Gradescope account cre-
dentials when prompted (for details see :ref: the notebook metadata section <otter_assign_v1_assignment_metadata>).
Otter Generate also needs the course ID and assignment ID of the assignment to which PDFs should be submitted—a
separate assignment from your autograder assignment of type “Homework / Problem Set.” This information can be
gathered from the assignment URL on Gradescope:

https://www.gradescope.com/courses/{COURSE ID}/assignments/{ASSIGNMENT ID}

To configure this behavior, set the course_id and assignment_id configurations in your config JSON file. When
Otter Generate is run, you will be prompted to enter your Gradescope email and password. Alternatively, you can
provide these via the command-line with the --username and --password flags, respectively:

otter generate --username someemail@domain.com --password thisisnotasecurepassword

62 Chapter 5. Grading Workflow

Otter-Grader Documentation

Currently, this action supports HTML comment filtering with pagebreaks, but these can be disabled with the filtering
and pagebreaks keys of your config.

For cases in which the generation or submission of this PDF fails, you can optionally relay this information to students
using the warn_missing_pdf configuration. If this is set to true, a 0-point failing test case will be displayed to the
student with the error thrown while trying to generate or submit the PDF:

Pass/Fail Thresholds

The configuration generator supports providing a pass/fail threshold. A threshold is passed as a float between 0 and 1
such that if a student receives at least that percentage of points, they will receive full points as their grade and 0 points
otherwise.

The threshold is specified with the threshold key:

{
"threshold": 0.25

}

For example, if a student passes a 2- and 1- point test but fails a 4-point test (a 43%) on a 25% threshold, they will get
all 7 points. If they only pass the 1-point test (a 14%), they will get 0 points.

5.1. Generating Configuration Files 63

Otter-Grader Documentation

Overriding Points Possible

By default, the number of points possible on Gradescope is the sum of the point values of each test. This value can be
overrided, however, to some other value using the points_possible key, which accepts an integer. Then the number
of points awarded will be the provided points value scaled by the percentage of points awarded by the autograder.

For example, if a student passes a 2- and 1- point test but fails a 4-point test, they will receive (2 + 1) / (2 + 1 + 4) * 2
= 0.8571 points out of a possible 2 when points_possible is set to 2.

As an example, the command below scales the number of points to 3:

{
"points_possible": 3

}

Intercell Seeding

The autograder supports intercell seeding with the use of the seed key. This behavior is not supported for Rmd and
R script assignments, but is supported for R Jupyter notebooks. Passing it an integer will cause the autograder to seed
NumPy and Python’s random library or call set.seed in R between every pair of code cells. This is useful for writing
deterministic hidden tests. More information about Otter seeding can be found here. As an example, you can set an
intercell seed of 42 with

{
"seed": 42

}

Showing Autograder Results

The generator allows intructors to specify whether or not the stdout of the grading process (anything printed to the
console by the grader or the notebook) is shown to students. The stdout includes a summary of the student’s test
results, including the points earned and possible of public and hidden tests, as well as the visibility of tests as indicated
by test["hidden"].

This behavior is turned off by default and can be turned on by setting show_stdout to true.

{
"show_stdout": true

}

If show_stdout is passed, the stdout will be made available to students only after grades are published on Gradescope.
The same can be done for hidden test outputs using the show_hidden key.

The Grading on Gradescope section details more about how output on Gradescope is formatted. Note that this behavior
has no effect on any platform besides Gradescope.

64 Chapter 5. Grading Workflow

Otter-Grader Documentation

Plugins

To use plugins during grading, list the plugins and their configurations in the plugin key of your config. If a plugin
requires no configurations, it should be listed as a string. If it does, it should be listed as a dictionary with a single key,
the plugin name, that maps to a subdictionary of configurations.

{
"plugins": [

"somepackage.SomeOtterPlugin",
{

"somepackage.SomeOtherOtterPlugin": {
"some_config_key": "some_config_value"
}

}
]

}

For more information about Plugins, see here.

5.1.6 Generating with Otter Assign

Otter Assign comes with an option to generate this zip file automatically when the distribution notebooks are created
via the generate key of the assignment metadata. See Creating Assignments for more details.

5.2 Executing Submissions

5.2.1 Grading Locally

The command line interface allows instructors to grade notebooks locally by launching Docker containers on the instruc-
tor’s machine that grade notebooks and return a CSV of grades and (optionally) PDF versions of student submissions
for manually graded questions.

Configuration Files

Otter grades students submissions in individual Docker containers that are based on a Docker image generated through
the use of a configuration zip file. Before grading assignments locally, an instructor should create such a zip file by
using a tool such as Otter Assign or Otter Generate. This file will be used in the construction of a Docker image
tagged otter-grader:{zip file hash}. This Docker image will then have containers spawned from it for each
submission that is graded.

Otter’s Docker images can be pruned with otter grade --prune.

5.2. Executing Submissions 65

Otter-Grader Documentation

Using the CLI

Before using the command line utility, you should have

• written tests for the assignment,

• generated a configuration zip file from those tests, and

• downloaded submissions into a directory

The grading interface, encapsulated in the otter grade command, runs the local grading process and defines the
options that instructors can set when grading. A comprehensive list of flags is provided in the CLI Reference.

Basic Usage

The simplest usage of the Otter Grade is when we have a directory structure as below (and we have change directories
into grading in the command line) and we don’t require PDFs or additional requirements.

grading
autograder.zip
nb0.ipynb
nb1.ipynb
nb2.ipynb # etc.
tests

q1.py
q2.py
q3.py # etc.

In the case above, our otter command would be, very simply,

otter grade

Because the submissions are on the current working directory (grading), our configuration file is at ./autograder.
zip, and we don’t mind output to ./, we can use the defualt values of the -a and -o flags.

After grader, our directory will look like this:

grading
autograder.zip
final_grades.csv
nb0.ipynb
nb1.ipynb
nb2.ipynb # etc.
tests

q1.py
q2.py
q3.py # etc.

and the grades for each submission will be in final_grades.csv.

If we wanted to generate PDFs for manual grading, we would specify this when making the configuration file and add
the --pdfs flag to tell Otter to copy the PDFs out of the containers:

otter grade --pdfs

and at the end of grading we would have

66 Chapter 5. Grading Workflow

Otter-Grader Documentation

grading
autograder.zip
final_grades.csv
nb0.ipynb
nb1.ipynb
nb2.ipynb # etc.
submission_pdfs

nb0.pdf
nb1.pdf
nb2.pdf # etc.

tests
q1.py
q2.py
q3.py # etc.

To grade a single notebook(as opposed to all the notebooks in a directory), you can pass the path to the notebook file
using the flag -p. For example, using the directory structure above, the call looks like this:

otter grade -p "./nb0.ipynb"

The usual information for this graded notebook is written to final_grades.csv but the percent correct is returned to
the command-line from the call as well.

To grade submissions that aren’t notebook files, use the --ext flag, which accepts the file extension to search for
submissions with. For example, if we had the same example as above but with Rmd files:

otter grade --ext Rmd

If you’re grading submission export zip files (those generated by otter.Notebook.export or ottr::export), your
otter_config.json should have its zips key set to true, and you should pass the -z flag to Otter Grade. You also
won’t need to use the --ext flag regardless of the type of file being graded inside the zip file.

Requirements

The Docker image used for grading will be built as described in the Otter Generatte section. If you require any packages
not listed there, or among the dependencies of any packages above, you should create a requirements.txt file containing
only those packages and use it when running your configuration generator.

5.2. Executing Submissions 67

Otter-Grader Documentation

Support Files

Some notebooks require support files to run (e.g. data files). If your notebooks require any such files, you should
generate your configuration zip file with those files.

Intercell Seeding

Otter Grade also supports intercell seeding. This behavior should be configured as a part of your configuration zip file.

5.2.2 Grading on Gradescope

This section describes how results are displayed to students and instructors on Gradescope.

Writing Tests for Gradescope

The tests that are used by the Gradescope autograder are the same as those used in other uses of Otter, but there is one
important field that is relevant to Gradescope that is not pertinent to any other uses.

As noted in the second bullet here, the "hidden" key of each test case indicates the visibility of that specific test case.

Results

Once a student’s submission has been autograded, the Autograder Results page will show the stdout of the grading
process in the “Autograder Output” box and the student’s score in the side bar to the right of the output. The stdout in-
cludes information from verifying the student’s scores against the logged scores, a dataframe that contains the student’s
score breakdown by question, and a summary of the information about test output visibility:

If show_stdout was true in your otter_config.json, then the autograder output will be shown to students after
grades are published on Gradescope. Students will not be able to see the results of hidden tests nor the tests themselves,
but they will see that they failed some hidden test in the printed DataFrame from the stdout.

Below the autograder output, each test case is broken down into boxes. The first box is called “Public Tests” and
summarizes the results of the public test cases only. This box is visible to students. If a student fails a hidden test but
no public tests, then this box will show “All tests passed” for that question, even though the student failed a hidden test.

68 Chapter 5. Grading Workflow

Otter-Grader Documentation

If the student fails a public test, then the output of the failed public test will be displayed here, but no information about
hidden tests will be included. In the example below, the student failed a hidden test case in q1 and a public test case in
q4.

Below the “Public Tests” box will be boxes for each question. These are hidden from the student unless show_hidden
was true in your otter_config.json; if that is the case, then they will become visible to students after grades are
published. These boxes show the results for each question, including the results of hidden test cases.

If all tests cases are passed, these boxes will indicate so:

If the studen fails any test cases, that information will be presented here. In the example below, q1 - 4 and q1 - 5
were hidden test cases; this screenshot corresponds to the second “Public Tests” section screenshot above.

5.2. Executing Submissions 69

Otter-Grader Documentation

5.2.3 Non-containerized Grading

Otter supports programmatic or command-line grading of assignments without requiring the use of Docker as an inter-
mediary. This functionality is designed to allow Otter to run in environments that do not support containerization, such
as on a user’s JupyterHub account. If Docker is available, it is recommended that Otter Grade is used instead, as
non-containerized grading is less secure.

To grade locally, Otter exposes the otter run command for the command line or the module otter.api for running
Otter programmatically. The use of both is described in this section. Before using Otter Run, you should have generated
an autograder configuration zip file.

Otter Run works by creating a temporary grading directory using the tempfile library and replicating the autograder
tree structure in that folder. It then runs the autograder there as normal. Note that Otter Run does not run environment
setup files (e.g. setup.sh) or install requirements, so any requirements should be available in the environment being
used for grading.

Grading from the Command Line

To grade a single submission from the command line, use the otter run utility. This has one required argument, the
path to the submission to be graded, and will run Otter in a separate directory structure created using tempfile. Use
the optional -a flag to specify a path to your configuration zip file if it is not at the default path ./autograder.zip.
Otter Run will write a JSON file, the results of grading, at {output_path}/results.json (output_path can be
configured with the -o flag, and defaults to ./).

If I wanted to use Otter Run on hw00.ipynb, I would run

otter run hw00.ipynb

If my autograder configuration file was at ../autograder.zip, I would run

otter run -a ../autograder.zip hw00.ipynb

70 Chapter 5. Grading Workflow

Otter-Grader Documentation

Either of the above will produce the results file at ./results.json.

For more information on the command-line interface for Otter Run, see the CLI Reference.

Grading Programmatically

Otter includes an API through which users can grade assignments from inside a Python session, encapsulated in the
submodule otter.api. The main method of the API is otter.api.grade_submission, which takes in an auto-
grader configuration file path and a submission path and grades the submission, returning the GradingResults object
that was produced during grading.

For example, to grade hw00.ipynb with an autograder configuration file in autograder.zip, I would run

from otter.api import grade_submission
grade_submission("hw00.ipynb", "autograder.zip")

grade_submission has an optional argument quiet which will suppress anything printed to the console by the
grading process during execution when set to True (default False).

For more information about grading programmatically, see the API reference.

Grading Results

This section describes the object that Otter uses to store and manage test case scores when grading.

class otter.test_files.GradingResults(test_files)
Stores and wrangles test result objects

Initialize with a list of otter.test_files.abstract_test.TestFile subclass objects and this class will
store the results as named tuples so that they can be accessed/manipulated easily. Also contains methods to put
the results into a nice dict format or into the correct format for Gradescope.

Parameters results (list of TestFile) – the list of test file objects summarized in this grade

results

maps test names to GradingTestCaseResult named tuples containing the test result information

Type dict

output

a string to include in the output field for Gradescope

Type str

all_hidden

whether all results should be hidden from the student on Gradescope

Type bool

tests

list of test names according to the keys of results

Type list of str

clear_results()

Empties the dictionary of results

5.2. Executing Submissions 71

Otter-Grader Documentation

classmethod from_ottr_json(ottr_output)
Creates a GradingResults object from the JSON output of Ottr.

Parameters ottr_output (str) – the JSON output of Ottr as a string

Returns the Ottr grading results

Return type GradingResults

get_plugin_data(plugin_name, default=None)
Retrieves data for plugin plugin_name in the results

This method uses dict.get to retrive the data, so a KeyError is never raised if plugin_name is not
found; rather, it returns None.

Parameters

• plugin_name (str) – the importable name of a plugin

• default (any, optional) – a default value to return if plugin_name is not found

Returns the data stored for plugin_name if found

Return type any

get_result(test_name)
Returns the TestFile corresponding to the test with name test_name

Parameters test_name (str) – the name of the desired test

Returns the graded test file object

Return type TestFile

get_score(test_name)
Returns the score of a test tracked by these results

Parameters test_name (str) – the name of the test

Returns the score

Return type int or float

hide_everything()

Indicates that all results should be hidden from students on Gradescope

property passed_all_public

whether all public tests in these results passed

Type bool

property possible

the total points possible

Type int or float

set_output(output)
Updates the output field of the results JSON with text relevant to the entire submission. See https://
gradescope-autograders.readthedocs.io/en/latest/specs/ for more information.

Parameters output (str) – the output text

72 Chapter 5. Grading Workflow

https://gradescope-autograders.readthedocs.io/en/latest/specs/
https://gradescope-autograders.readthedocs.io/en/latest/specs/

Otter-Grader Documentation

set_pdf_error(error: Exception)
Set a PDF generation error to be displayed as a failed (0-point) test on Gradescope.

Parameters error (Exception) – the error thrown

set_plugin_data(plugin_name, data)
Stores plugin data for plugin plugin_name in the results. data must be picklable.

Parameters

• plugin_name (str) – the importable name of a plugin

• data (any) – the data to store; must be serializable with pickle

summary(public_only=False)
Generate a summary of these results and return it as a string.

Parameters public_only (bool, optional) – whether only public test cases should be included

Returns the summary of results

Return type str

property test_files

the names of all test files tracked in these grading results

Type list[TestFile]

to_dict()

Converts these results into a dictinary, extending the fields of the named tuples in results into key, value
pairs in a dict.

Returns the results in dictionary form

Return type dict

to_gradescope_dict(ag_config)
Converts these results into a dictionary formatted for Gradescope’s autograder. Requires a dictionary of
configurations for the Gradescope assignment generated using Otter Generate.

Parameters ag_config (otter.run.run_autograder.autograder_config.
AutograderConfig) – the autograder config

Returns the results formatted for Gradescope

Return type dict

to_report_str()

Returns these results as a report string generated using the __repr__ of the TestFile class.

Returns the report

Return type str

property total

the total points earned

Type int or float

update_score(test_name, new_score)
Updates the values in the GradingTestCaseResult object stored in self.results[test_name] with
the key-value pairs in kwargs.

Parameters

5.2. Executing Submissions 73

Otter-Grader Documentation

• test_name (str) – the name of the test

• new_score (int or float) – the new score

verify_against_log(log, ignore_hidden=True)
Verifies these scores against the results stored in this log using the results returned by Log.get_results
for comparison. Prints a message if the scores differ by more than the default tolerance of math.isclose.
If ignore_hidden is True, hidden tests are ignored when verifying scores.

Parameters

• log (otter.check.logs.Log) – the log to verify against

• ignore_hidden (bool, optional) – whether to ignore hidden tests during verification

Returns whether a discrepancy was found

Return type bool

This section describes how students’ submissions can be executed using the configuration file from the previous part.
There are three main options for executing students’ submissions:

• local grading, in which the assignments are downloaded onto the instructor’s machine and graded in parallelized
Docker containers,

• Gradescope, in which the zip file is uploaded to a Programming Assignment and students submit to the Grade-
scope web interface, or

• non-containerized local grading, in which assignments are graded in a temporary directory structure on the
user’s machine

The first two options are recommended as they provide better security by sandboxing students’ submissions in con-
tainerized environments. The third option is present for users who are running on environments that don’t have access
to Docker (e.g. running on a JupyterHub account).

5.2.4 Execution

All of the options listed above go about autograding the submission in the same way; this section describes the steps
taken by the autograder to generate a grade for the student’s autogradable work.

The steps taken by the autograder are:

1. Copies the tests and support files from the autograder source (the contents of the autograder configuration zip
file)

2. Globs all .ipynb files in the submission directory and ensures there are <e; 1, taking that file as the submission

3. Reads in the log from the submission if it exists

4. Executes the notebook using the tests provided in the autograder source (or the log if indicated)

5. Looks for discrepancies between the logged scores and the public test scores and warns about these if present

6. If indicated, exports the notebook as a PDF and submits this PDF to the PDF Gradescope assignment

7. Makes adjustments to the scores and visibility based on the configurations

8. Generates a Gradescope-formatted JSON file for results and serializes the results object to a pickle file

9. Prints the results as a dataframe to stdout

74 Chapter 5. Grading Workflow

Otter-Grader Documentation

Assignment Name Verification

To ensure that students have uploaded submissions to the correct assignment on your LMS, you can con-
figure Otter to check for an assignment name in the notebook metadata of the submission. If you set the
assignment_name key of your otter_config.json to a string, Otter will check that the submission has this
name as nb["metadata"]["otter"]["assignment_name"] (or, in the case of R Markdown submissions, the
assignment_name key of the YAML header) before grading it. (This metadata can be set automatically with Ot-
ter Assign.) If the name doesn’t match or there is no name, an error will be raised and the assignment will not be
graded. If the assignment_name key is not present in your otter_config.json, this validation is turned off.

The workflow for grading with Otter is very standard irrespective of the medium by which instructors will collect
students’ submissions. In general, it is a four-step process:

1. Generate a configuration zip file

2. Collect submissions via LMS (Canvas, Gradescope, etc.)

3. Run the autograder on each submission

4. Grade written questions via LMS

Steps 1 and 3 above are covered in this section of the documentation. All Otter autograders require a configuration zip
file, the creation of which is described in the next section, and this zip file is used to create a grading environment. There
are various options for where and how to grade submissions, both containerized and non-containerized, described in
Executing Submissions.

5.2. Executing Submissions 75

Otter-Grader Documentation

76 Chapter 5. Grading Workflow

CHAPTER

SIX

SUBMISSION EXECUTION

This section of the documentation describes the process by which submissions are executed in the autograder. Regard-
less of the method by which Otter is used, the autograding internals are all the same, although the execution differs
slightly based on the file type of the submission.

6.1 Notebooks

If students are submitting IPython notebooks (.ipynb files), they are executed as follows:

1. Cells tagged with otter_ignore are removed from the notebook in memory.

2. A dummy environment (a dict) is created and loaded with IPython.display.display and sys, which has
the working directory appended to its path.

3. If a seed is provided, NumPy and random are loaded into the environment as np and random, respectively

4. The code cells are iterated through:

1. The cell source is confrted into a list of strings line-by-line

2. Lines that run cell magic (lines starting with %) or that call ipywidgets.interact are removed

3. Lines that create an instance of otter.Notebook with a custom tests directory have their arguments
transformed to set the correct path to the tests directory

4. The lines are collected into a single multiline string

5. If a seed is provided, the string is prepended with f"np.random.seed({seed})\nrandom.
seed({seed})\n"

6. The code lines are run through an IPython.core.inputsplitter.IPythonInputSplitter

7. The string is run in the dummy environment with otter.Notebook.export and otter.Notebook.
_log_event patched so that they don’t run

8. If the run was successful, the cell contents are added to a collection string. If it fails, the error is ignored
unless otherwise indicated.

9. If the cell has metadata indicating that a check should be run after that cell, the code for the check is
added.

5. The collection string is turned into an abstract syntax tree that is then transformed so that all calls of any form
to otter.Notebook.check have their return values appended to a prenamed list which is in the dummy envi-
ronemnt.

6. The AST is compiled and executed in the dummy environment with stdout and stderr captured and otter.
Notebook.export and otter.Notebook._log_event patched.

77

Otter-Grader Documentation

7. If the run was successful, the cell contents are added to a collection string. If it fails, the error is ignored unless
otherwise indicated.

8. The dummy environment is returned.

The grades for each test are then collected from the list to which they were appended in the dummy environment and
any additional tests are run against this resulting environment. Running in this manner has one main advantage: it is
robust to variable name collisions. If two tests rely on a variable of the same name, they will not be stymied by the
variable being changed between the tests, because the results for one test are collected from when that check is called
rather than being run at the end of execution.

It is also possible to specify tests to run in the cell metadata without the need of explicit calls to Notebook.check. To
do so, add an otter field to the cell metadata with the following structure:

{
"otter": {

"tests": [
"q1",
"q2"

]
}

}

The strings within tests should correspond to filenames within the tests directory (without the .py extension) as
would be passed to Notebook.check. Inserting this into the cell metadata will cause Otter to insert a call to a covertly
imported Notebook instance with the correct filename and collect the results at that point of execution, allowing for
robustness to variable name collisions without explicit calls to Notebook.check. Note that these tests are not currently
seen by any checks in the notebook, so a call to Notebook.check_all will not include the results of these tests.

6.2 Scripts

If students are submitting Python scripts, they are executed as follows:

1. A dummy environment (a dict) is created and loaded with sys, which has the working directory appended to
its path.

2. If a seed is provided, NumPy and random are loaded into the environment as np and random, respectively.

3. The lines of the script are iterated through and lines that create an instance of otter.Notebook with a custom
tests directory have their arguments transformed to set the correct path to the tests directory.

4. The string is run in the dummy environment with otter.Notebook.export and otter.Notebook.
_log_event patched so that they don’t run

5. If the run was successful, the cell contents are added to a collection string. If it fails, the error is ignored unless
otherwise indicated.

6. The collection string is turned into an abstract syntax tree that is then transformed so that all calls of any form
to otter.Notebook.check have their return values appended to a prenamed list which is in the dummy envi-
ronemnt.

7. The AST is compiled and executed in the dummy environment with stdout and stderr captured and otter.
Notebook.export and otter.Notebook._log_event patched.

8. If the run was successful, the cell contents are added to a collection string. If it fails, the error is ignored unless
otherwise indicated.

9. The dummy environment is returned.

78 Chapter 6. Submission Execution

Otter-Grader Documentation

Similar to notebooks, the grades for tests are collected from the list in the returned environment and additional tests are
run against it.

6.3 Logs

If grading from logs is enabled, the logs are xecuted in the following manner:

1. A dummy environment (a dict) is created and loaded with sys, which has the working directory appended to
its path, and an otter.Notebook instance named grader.

2. The lines of each code cell are iterated through and each import statement is executed in the dummy environment.

3. Each entry in the log is iterated through and has its serialized environments deserialized and loaded into the
dummy environment. If variable type checking is enabled, and variables whose types do not match their pre-
specified type are not loaded.

4. The grader in the dummy environment has its check method called and the results are collected in a list in the
dummy environment.

5. A message is printed to stdout indicating which questions were executed from the log.

6. The dummy environment is returned.

Similar to the above file types, the grades for tests are collected from the list in the returned environment and additional
tests are run against it.

6.3. Logs 79

Otter-Grader Documentation

80 Chapter 6. Submission Execution

CHAPTER

SEVEN

PLUGINS

7.1 Built-In Plugins

7.1.1 Google Sheets Grade Override

This plugin allows you to override test case scores during grading by specifying the new score in a Google Sheet that
is pulled in. To use this plugin, you must set up a Google Cloud project and obtain credentials for the Google Sheets
API. This plugin relies on gspread to interact with the Google Sheets API and its documentation contains instructions
on how to obtain credentials. Once you have created credentials, download them as a JSON file.

This plugin requires two configurations: the path to the credentials JSON file and the URL of the Google Sheet. The
former should be entered with the key credentials_json_path and the latter sheet_url; for example, in Otter
Assign:

plugins:
- otter.plugins.builtin.GoogleSheetsGradeOverride:

credentials_json_path: /path/to/google/credentials.json
sheet_url: https://docs.google.com/some/google/sheet

The first tab in the sheet is assumed to be the override information.

During Otter Generate, the plugin will read in this JSON file and store the relevant data in the otter_config.json
for use during grading. The Google Sheet should have the following format:

Assignment ID Email Test Case Points PDF
123456 student@univ.edu q1a - 1 1 false

• Assignment ID should be the ID of the assignment on Gradescope (to allow one sheet to be used for multiple
assignments)

• Email should be the student’s email address on Gradescope

• Test Case should be the name of the test case as a string (e.g. if you have a test file q1a.py with 3 test cases,
overriding the second case would be q1a - 2)

• Points should be the point value to assign the student for that test case

• PDF should be whether or not a PDF should be re-submitted (to prevent losing manual grades on Gradescope for
regrade requests)

Note that the use of this plugin requires specifying gspread in your requirements, as it is not included by default in
Otter’s container image.

81

https://gspread.readthedocs.io/en/latest/
mailto:student@univ.edu

Otter-Grader Documentation

otter.plugins.builtin.GoogleSheetsGradeOverride Reference

The actions taken by at hook for this plugin are detailed below.

7.1.2 Rate Limiting

This plugin allows instructors to limit the number of times students can submit to the autograder in any given window to
prevent students from using the AG as an “oracle”. This plugin has a required configuration allowed_submissions,
the number of submissions allowed during the window, and accepts optional configurations weeks, days, hours,
minutes, seconds, milliseconds, and microseconds (all defaulting to 0) to configure the size of the window. For
example, to specify 5 allowed submissions per-day in your otter_config.json:

{
"plugins": [

{
"otter.plugins.builtin.RateLimiting": {

"allowed_submissions": 5,
"days": 1

}
}

]
}

When a student submits, the window is caculated as a datetime.timedelta object and if the student has at least
allowed_submissions in that window, the submission’s results are hidden and the student is only shown a message;
from the example above:

You have exceeded the rate limit for the autograder. Students are allowed 5 submissions␣
→˓every 1
days.

The results of submission execution are still visible to instructors.

If the student’s submission is allowed based on the rate limit, the plugin outputs a message in the plugin report; from
the example above:

Students are allowed 5 submissions every 1 days. You have {number of previous␣
→˓submissions}
submissions in that period.

otter.plugins.builtin.RateLimiting Reference

The actions taken by at hook for this plugin are detailed below.

82 Chapter 7. Plugins

Otter-Grader Documentation

7.1.3 Gmail Notifications

This plugin sends students an email summary of the results of their public test cases using the Gmail API. To use this
plugin, you must set up a Google Cloud project and create an OAuth2 Client that can be used as a proxy for another
email address.

Setup

Before using this plugin, you must first create Google OAuth2 credentials on a Google Cloud project. Using these
credentials, you must then obtain a refresh token that connects these credentials to the account from which you want to
send the emails. Once you have the credentials, use the gmail_oauth2 CLI included with Otter to generate the refresh
token. Use the command below to perform this action, substituting in your credentials client ID and secret.

gmail_oauth2 --generate_oauth2_token --client_id="<client_id>" --client_secret="<client_
→˓secret>" --scope="https://www.googleapis.com/auth/gmail.send"

This command will prompt you to visit a URL and authenticate with Google, which will then provide you with a
verification code that you should enter back in the CLI. You will then be provided with your refresh token.

Configuration

This plugin requires four configurations: the Google client ID, client secret, refresh token, and the email address from
which emails are being sent (the same one used to authenticate for the refresh token).

plugins:
- otter.plugins.builtin.GmailNotifications:

client_id: client_id-1234567.apps.googleusercontent.com
client_secret: abc123
refresh_token: 1//abc123
email: course@univ.edu

Optionally, this plugin also accepts a catch_api_error configuration, which is a boolean indicating whether Google
API errors should be ignored.

Output

The email sent to students uses the following jinja2 template:

<p>Hello {{ student_name }},</p>

<p>Your submission {% if zip_name %}<code>{{ zip_name }}</code>{% endif %} for assignment
{{ assignment_title }} submitted at {{ submission_timestamp }} received␣
→˓the
following scores on public tests:</p>

<pre>{{ score_report }}</pre>

<p>If you have any questions or notice any issues, please contact your instructors.</p>

<hr>

<p>This message was automatically generated by Otter-Grader.</p>

7.1. Built-In Plugins 83

Otter-Grader Documentation

The resulting email looks like this:

Note that the report only includes the results of public tests.

84 Chapter 7. Plugins

images/gmail_plugin_email.png

Otter-Grader Documentation

otter.plugins.builtin.GmailNotifications Reference

Otter comes with a few built-in plugins to optionally extend its own functionality. These plugins are
documented here. Note: To use these plugins, specify the importable names exactly as seen here (i.e.
otter.plugins.builtin.GoogleSheetsGradeOverride, not otter.plugins.builtin.grade_override.
GoogleSheetsGradeOverride).

7.2 Creating Plugins

Plugins can be created by exposing an importable class that inherits from otter.plugins.AbstractOtterPlugin.
This class defines the base implementations of the plugin event methods and sets up the other information needed to
run the plugin.

7.2.1 Plugin Configurations

When instantiated, plugins will receive three arguments: submission_path, the absolute path to the submission being
executed, submission_metadata, the information about the submission as read in from submission_metadata.
json, and plugin_config, the parsed configurations from the user-specified list of plugins in the plugins key of
otter_config.json. The default implementation of __init__, which should have the signature shown below, sets
these two values to the instance variables self.submission_metadata and self.plugin_config, respectively.
Note that some events are executed in contexts in which some or all of these variables are unavailable, and so these
events should not rely on the use of these instance variables. In cases in which these are unavailable, they will be set
for the falsey version of their type, e.g. {} for self.submission_metadata.

7.2.2 Plugin Events

Plugins currently support five events. Most events are expected to modify the state of the autograder and
should not return anything, unless otherwise noted. Any plugins not supported should raise a otter.plugins.
PluginEventNotSupportedException, as the default implementations in AbstractOtterPlugin do. Note that
all methods should have the signatures described below.

during_assign

The during_assign method will be called when Otter Assign is run. It will receive the otter.assign.
assignment.Assignment instance with configurations for this assignment. The plugin is run after output directories
are written.

during_generate

The during_generate method will be called when Otter Generate is run. It will receive the parsed dictionary of
configurations from otter_config.json as its argument. Any changes made to the configurations will be written to
the otter_config.json that will be stored in the configuration zip file generated by Otter Generate.

7.2. Creating Plugins 85

https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/
https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/

Otter-Grader Documentation

from_notebook

The from_notebook method will be called when a student makes a call to otter.Notebook.run_plugin with the
plugin name. Any additional args and kwargs passed to Notebook.run_plugin will be passed to the plugin method.
This method should not return anything but can modify state or provide feedback to students. Note that because this
plugin is not run in the grading environment, it will *not* be passed the submission path, submission metadata,
or a plugin config. All information needed to run this plugin event must be gathered from the arguments passed to it.

notebook_export

The notebook_export method will be called when a student makes a call to otter.Notebook.add_plugin_files
with the plugin name. Any additional args and kwargs passed to Notebook.add_plugin_files will be passed to
the plugin mtehod. This method should return a list of strings that correspond to file paths that should be included in
the zip file generated by otter.Notebook.export when it is run. The Notebook instance tracks these files in a list.
Note that because this plugin is not run in the grading environment, it will *not* be passed the submission path,
submission metadata, or a plugin config. All information needed to run this plugin event must be gathered from the
arguments passed to it.

before_grading

The before_grading method will be called before grading occurs, just after the plugins are instantiated, and will
be passed an instance of the otter.run.run_autograder.autograder_config.AutograderConfig class, a fica
configurations class. Any changes made to the options will be used during grading.

before_execution

The before_execution method will be called before execution occurs and will be passed the student’s submission.
If the submission is a notebook, the object passed will be a nbformat.NotebookNode from the parsed JSON. If the
submission is a script, the objet passed will be a string containing the file text. This method should return a properly-
formatted NotebookNode or string that will be executed in place of the student’s original submission.

after_execution

The after_execution method will be called after the student’s submission is executed but before the results object
is created. It will be passed the global environment resulting from the execution of the student’s code. Any changes
made to the global environment will be reflected in the tests that are run after execution (meaning any that do not have
a call to otter.Notebook.check to run them).

after_grading

The after_grading method will be called after grading has occurred (meaning all tests have been run and the results
object has been created). It will be passed the otter.test_files.GradingResults object that contains the results
of the student’s submission against the tests. Any changes made to this object will be reflected in the results returned
by the autograder. For more information about this object, see Non-containerized Grading.

86 Chapter 7. Plugins

https://fica.readthedocs.io/

Otter-Grader Documentation

generate_report

The generate_report method will be called after results have been written. It receives no arguments but should
return a value. The return value of this method should be a string that will be printed to stdout by Otter as part of the
grading report.

7.2.3 AbstractOtterPlugin Reference

class otter.plugins.AbstractOtterPlugin(submission_path, submission_metadata, plugin_config)
Abstract base class for Otter plugins to inherit from. Includes the following methods:

• during_assign: run during Otter Assign after output directories are written

• during_generate: run during Otter Generate while all files are in-memory and before the the tmp direc-
tory is created

• from_notebook: run as students as they work through the notebook; see Notebook.run_plugin

• notebook_export: run by Notebook.export for adding files to the export zip file

• before_grading: run before the submission is executed for altering configurations

• before_execution: run before the submission is executed for altering the submission

• after_execution: run after the submission is executed

• after_grading: run after all tests are run and scores are assigned

• generate_report: run after results are written

See the docstring for the default implementation of each method for more information, including arguments
and return values. If plugin has no actions for any event above, that method should raise otter.plugins.
PluginEventNotSupportedException. (This is the default behavior of this ABC, so inheriting from this
class will do this for you for any methods you don’t overwrite.)

If this plugin requires metadata, it should be included in the plugin configuration of the otter_config.json
file as a subdictionary with key a key corresponding to the importable name of the plugin. If no configurations
are required, the plugin name should be listed as a string. For example, the config below provides configurations
for MyOtterPlugin but not MyOtherOtterPlugin.

{
"plugins": [

{
"my_otter_plugin_package.MyOtterPlugin": {

"some_metadata_key": "some_value"
}

},
"my_otter_plugin_package.MyOtherOtterPlugin"

]
}

Parameters

• submission_path (str) – the absolute path to the submission being graded

• submission_metadata (dict) – submission metadata; if on Gradescope, see https://
gradescope-autograders.readthedocs.io/en/latest/submission_metadata/

7.2. Creating Plugins 87

https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/
https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/

Otter-Grader Documentation

• plugin_config (dict) – configurations from the otter_config.json for
this plugin, pulled from otter_config["plugins"][][PLUGIN_NAME] if
otter_config["plugins"][] is a dict

submission_path

the absolute path to the submission being graded

Type str

submission_metadata

submission metadata; if on Gradescope, see https://gradescope-autograders.readthedocs.io/en/latest/
submission_metadata/

Type dict

plugin_config

configurations from the otter_config.json for this plugin, pulled from
otter_config["plugins"][][PLUGIN_NAME] if otter_config["plugins"][] is a dict

Type dict

after_execution(global_env)
Plugin event run after the execution of the submission which can modify the resulting global environment.

Parameters global_env (dict) – the environment resulting from the execution of the students’
code; see otter.execute

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

after_grading(results)
Plugin event run after all tests are run on the resulting environment that gets passed the otter.
test_files.GradingResults object that stores the grading results for each test case.

Parameters results (otter.test_files.GradingResults) – the results of all test cases

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

before_execution(submission)
Plugin event run before the execution of the submission which can modify the submission itself. This
method should return a properly-formatted NotebookNode or string that will be executed in place of the
student’s original submission.

Parameters submission (nbformat.NotebookNode or str) – the submission for grading; if
it is a notebook, this will be the JSON-parsed dict of its contents; if it is a script, this will
be a string containing the code

Returns the altered submission to be executed

Return type nbformat.NotebookNode or str

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

before_grading(config)
Plugin event run before the execution of the submission which can modify the dictionary of grading con-
figurations.

Parameters config (otter.run.run_autograder.autograder_config.
AutograderConfig) – the autograder config

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

88 Chapter 7. Plugins

https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/
https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/

Otter-Grader Documentation

during_assign(assignment)
Plugin event run during the execution of Otter Assign after output directories are wrriten. Assignment
configurations are passed in via the assignment argument.

Parameters assignment (otter.assign.assignment.Assignment) – the Assignment in-
stance with configurations for the assignment; used similar to an AttrDict where keys are
accessed with the dot syntax (e.g. assignment.master is the path to the master notebook)

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

during_generate(otter_config, assignment)
Plugin event run during the execution of Otter Generate that can modify the configurations to be written to
otter_config.json.

Parameters

• otter_config (dict) – the dictionary of Otter configurations to be written to
otter_config.json in the zip file

• assignment (otter.assign.assignment.Assignment) – the Assignment instance
with configurations for the assignment if Otter Assign was used to generate this zip file;
will be set to None if Otter Assign is not being used

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

from_notebook(*args, **kwargs)
Plugin event run by students as they work through a notebook via the Notebook API (see Notebook.
run_plugin). Accepts arbitrary arguments and has no return.

Parameters

• *args – arguments for the plugin event

• **kwargs – keyword arguments for the plugin event

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

generate_report()

Plugin event run after grades are written to disk. This event should return a string that gets printed to stdout
as a part of the plugin report.

Returns the string to be included in the report

Return type str

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

notebook_export(*args, **kwargs)
Plugin event run when a student calls Notebook.export. Accepts arbitrary arguments and should return
a list of file paths to include in the exported zip file.

Parameters

• *args – arguments for the plugin event

• **kwargs – keyword arguments for the plugin event

Returns the list of file paths to include in the export

Return type list[str]

Raises PluginEventNotSupportedException – if the event is not supported by this plugin

Otter-Grader supports grading plugins that allow users to override the default behavior of Otter by injecting an im-
portable class that is able to alter the state of execution.

7.2. Creating Plugins 89

Otter-Grader Documentation

7.3 Using Plugins

Plugins can be configured in your otter_config.json file by listing the plugins as their fully-qualified importable
names in the plugins key:

{
"plugins": [

"mypackage.MyOtterPlugin"
]

}

To supply configurations for the plugins, add the plugin to plugins as a dictionary mapping a single key, the plugin
importable name, to a dictionary of configurations. For example, if we needed mypackage.MyOtterPlugin with
configurations but mypackage.MyOtherOtterPlugin required none, the configurations for these plugins would look
like

{
"plugins": [

{
"mypackage.MyOtterPlugin": {

"key1": "value1",
"key2": "value2"

}
},
"mypackage.MyOtherOtterPlugin"

]
}

7.4 Building Plugins

Plugins can be created as importable classes in packages that inherit from the otter.plugins.
AbstractOtterPlugin class. For more information about creating plugins, see Creating Plugins.

90 Chapter 7. Plugins

CHAPTER

EIGHT

PDF GENERATION AND FILTERING

Otter includes a tool for generating PDFs of notebooks that optionally incorporates notebook filtering for generating
PDFs for manual grading. There are two options for exporting PDFs:

• PDF via LaTeX: this uses nbconvert, pandoc, and LaTeX to generate PDFs from TeX files

• PDF via HTML: this uses wkhtmltopdf and the Python packages pdfkit and PyPDF2 to generate PDFs from
HTML files

Otter Export is used by Otter Assign to generate Gradescope PDF templates and solutions, in the Gradescope autograder
to generate the PDFs of notebooks, by otter.Notebook to generate PDFs and in Otter Grade when PDFs are requested.

8.1 Cell Filtering

Otter Export uses HTML comments in Markdown cells to perform cell filtering. Filtering is the default behavior of
most exporter implementations, but not of the exporter itself.

You can place HTML comments in Markdown cells to capture everything in between them in the output. To start a
filtering group, place the comment <!-- BEGIN QUESTION -->whereever you want to start exporting and place <!--
END QUESTION --> at the end of the filtering group. Everything capture between these comments will be exported,
and everything outside them removed. You can have multiple filtering groups in a notebook. When using Otter Export,
you can also optionally add page breaks after an <!-- END QUESTION --> by setting pagebreaks=True in otter.
export.export_notebook or using the corresponding flags/arguments in whichever utility is calling Otter Export.

91

Otter-Grader Documentation

92 Chapter 8. PDF Generation and Filtering

CHAPTER

NINE

INTERCELL SEEDING

The Otter suite of tools supports intercell seeding, a process by which notebooks and scripts can be seeded for the
generation of pseudorandom numbers, which is very advantageous for writing deterministic hidden tests. This section
discusses the inner mechanics of intercell seeding, while the flags and other UI aspects are discussed in the sections
corresponding to the Otter tool you’re using.

9.1 Seeding Mechanics

This section describes at a high-level how seeding is implemented in the autograder at the layer of code execution.
There are two methods of seeding: the use of a seed variable, and seeding the libraries themselves.

The examples in this section are all in Python, but they also work the same in R.

9.1.1 Seed Variables

The use of seed variables is configured by setting both the seed and seed_variable configurations in your
otter_config.json:

{
"seed": 42,
"seed_variable": "rng_seed"

}

Notebooks

When seeding in notebooks, an assignment of the variable name indicated by seed_variable is added at the top of
every cell. In this way, cells that use the seed variable to create an RNG or seed libraries can have their seed changed
from the default at runtime.

For example, let’s say we have the configuration above and the two cells below:

x = 2 ** np.arange(5)

and

rng = np.random.default_rng(rng_seed)
y = rng.normal(100)

They would be sent to the autograder as:

93

Otter-Grader Documentation

rng_seed = 42
x = 2 ** np.arange(5)

and

rng_seed = 42
rng = np.random.default_rng(rng_seed)
y = rng.normal(100)

Note that the initial value of the seed variable must be set in a separate cell from any of its uses, or the original value
will override autograder value.

Python Scripts

Seed variables currently do not support Python scripts.

9.1.2 Seeding Libraries

Seeding libraries is configured by setting the seed configuration in your otter_config.json:

{
"seed": 42

}

Notebooks

When seeding in notebooks, both NumPy and random are seeded using an integer provided by the instructor. The
seeding code is added to each cell’s source before running it through the executor, meaning that the results of every
cell are seeded with the same seed. For example, let’s say we have the configuration above and the two cells below:

x = 2 ** np.arange(5)

and

y = np.random.normal(100)

They would be sent to the autograder as:

np.random.seed(42)
random.seed(42)
x = 2 ** np.arange(5)

and

np.random.seed(42)
random.seed(42)
y = np.random.normal(100)

94 Chapter 9. Intercell Seeding

Otter-Grader Documentation

Python Scripts

Seeding Python files is relatively more simple. The implementation is similar to that of notebooks, but the script is
only seeded once, at the beginning. Thus, the Python file below:

import numpy as np

def sigmoid(t):
return 1 / (1 + np.exp(-1 * t))

would be sent to the autograder as

np.random.seed(42)
random.seed(42)
import numpy as np

def sigmoid(t):
return 1 / (1 + np.exp(-1 * t))

You don’t need to worry about importing NumPy and random before seeding as these modules are loaded by the
autograder and provided in the global environment that the script is executed against.

9.2 Caveats

Remekber, when writing assignments or using assignment generation tools like Otter Assign, the instructor must seed
the solutions themselves before writing hidden tests in order to ensure they are grading the correct values. Also,
students will not have access to the random seed, so any values they compute in the notebook may be different from
the results of their submission when it is run through the autograder.

9.2. Caveats 95

Otter-Grader Documentation

96 Chapter 9. Intercell Seeding

CHAPTER

TEN

LOGGING

In order to assist with debugging students’ checks, Otter automatically logs events when called from otter.Notebook
or otter check. The events are logged in the following methods of otter.Notebook:

• __init__

• _auth

• check

• check_all

• export

• submit

• to_pdf

The events are stored as otter.logs.LogEntry objects which are pickled and appended to a file called .OTTER_LOG.
To interact with a log, the otter.logs.Log class is provided; logs can be read in using the class method Log.
from_file:

from otter.check.logs import Log
log = Log.from_file(".OTTER_LOG")

The log order defaults to chronological (the order in which they were appended to the file) but this can be reversed by set-
ting the ascending argument to False. To get the most recent results for a specific question, use Log.get_results:

log.get_results("q1")

Note that the otter.logs.Log class does not support editing the log file, only reading and interacting with it.

10.1 Logging Environments

Whenever a student runs a check cell, Otter can store their current global environment as a part of the log. The purpose
of this is twofold: 1) to allow the grading of assignments to occur based on variables whose creation requires access
to resources not possessed by the grading environment, and 2) to allow instructors to debug students’ assignments
by inspecting their global environment at the time of the check. This behavior must be preconfigured with an Otter
configuration file that has its save_environment key set to true.

Shelving is accomplished by using the dill library to pickle (almost) everything in the global environment, with the
notable exception of modules (so libraries will need to be reimported in the instructor’s environment). The environment
(a dictionary) is pickled and the resulting file is then stored as a byte string in one of the fields of the log entry.

Environments can be saved to a log entry by passing the environment (as a dictionary) to LogEntry.shelve. Any
variables that can’t be shelved (or are ignored) are added to the unshelved attribute of the entry.

97

Otter-Grader Documentation

from otter.logs import LogEntry
entry = LogEntry()
entry.shelve(globals())

The shelve method also optionally takes a parameter variables that is a dictionary mapping variable names to
fully-qualified type strings. If passed, only variables whose names are keys in this dictionary and whose types match
their corresponding values will be stored in the environment. This helps from serializing unnecessary objects and
prevents students from injecting malicious code into the autograder. To get the type string, use the function otter.
utils.get_variable_type. As an example, the type string for a pandas DataFrame is "pandas.core.frame.
DataFrame":

>>> import pandas as pd
>>> from otter.utils import get_variable_type
>>> df = pd.DataFrame()
>>> get_variable_type(df)
'pandas.core.frame.DataFrame'

With this, we can tell the log entry to only shelve dataframes named df:

from otter.logs import LogEntry
variables = {"df": "pandas.core.frame.DataFrame"}
entry = LogEntry()
entry.shelve(globals(), variables=variables)

If you are grading from the log and are utilizing variables, you must include this dictionary as a JSON string in your
configuration, otherwise the autograder will deserialize anything that the student submits. This configuration is set in
two places: in the Otter configuration file that you distribute with your notebook and in the autograder. Both of these
are handled for you if you use Otter Assign to generate your distribution files.

To retrieve a shelved environment from an entry, use the LogEntry.unshelvemethod. During the process of unshelv-
ing, all functions have their __globals__ updated to include everything in the unshelved environment and, optionally,
anything in the environment passed to global_env.

>>> env = entry.unshelve() # this will have everything in the shelf in it -- but not␣
→˓factorial
>>> from math import factorial
>>> env_with_factorial = entry.unshelve({"factorial": factorial}) # add factorial to all␣
→˓fn __globals__
>>> "factorial" in env_with_factorial["some_fn"].__globals__
True
>>> factorial is env_with_factorial["some_fn"].__globals__["factorial"]
True

See the reference below for more information about the arguments to LogEntry.shelve and LogEntry.unshelve.

98 Chapter 10. Logging

Otter-Grader Documentation

10.2 Debugging with the Log

The log is useful to help students debug tests that they are repeatedly failing. Log entries store any errors thrown by
the process tracked by that entry and, if the log is a call to otter.Notebook.check, also the test results. Any errors
held by the log entry can be re-thrown by calling LogEntry.raise_error:

from otter.logs import Log
log = Log.from_file(".OTTER_LOG")
entry = log.entries[0]
entry.raise_error()

The test results of an entry can be returned using LogEntry.get_results:

entry.get_results()

10.3 Grading from the Log

As noted earlier, the environments stored in logs can be used to grade students’ assignments. If the grading environment
does not have the dependencies necessary to run all code, the environment saved in the log entries will be used to run
tests against. For example, if the execution hub has access to a large SQL server that cannot be accessed by a Gradescope
grading container, these questions can still be graded using the log of checks run by the students and the environments
pickled therein.

To configure these pregraded questions, include an Otter configuration file in the assignment directory that defines the
notebook name and that the saving of environments should be turned on:

{
"notebook": "hw00.ipynb",
"save_environment": true

}

If you are restricting the variables serialized during checks, also set the variables or ignore_modules parameters. If
you are grading on Gradescope, you must also tell the autograder to grade from the log using the --grade-from-log
flag when running or the grade_from_log subkey of generate if using Otter Assign.

10.4 Otter Logs Reference

10.4.1 otter.logs.Log

class otter.logs.Log(entries, ascending=True)
A class for reading and interacting with a log. Allows you to iterate over the entries in the log and supports
integer indexing. Does not support editing the log file.

Parameters

• entries (list of LogEntry) – the list of entries for this log

• ascending (bool, optional) – whether the log is sorted in ascending (chronological) order;
default True

10.2. Debugging with the Log 99

Otter-Grader Documentation

entries

the list of log entries in this log

Type list of LogEntry

ascending

whether entries is sorted chronologically; False indicates reverse- chronological order

Type bool

classmethod from_file(filename, ascending=True)
Loads and sorts a log from a file.

Parameters

• filename (str) – the path to the log

• ascending (bool, optional) – whether the log should be sorted in ascending (chronolog-
ical) order; default True

Returns the Log instance created from the file

Return type Log

get_question_entry(question)
Gets the most recent entry corresponding to the question question

Parameters question (str) – the question to get

Returns the most recent log entry for question

Return type LogEntry

Raises QuestionNotInLogException – if the question is not in the log

get_questions()

Returns a sorted list of all question names that have entries in this log.

Returns the questions in this log

Return type list of str

get_results(question)
Gets the most recent grading result for a specified question from this log

Parameters question (str) – the question name to look up

Returns the most recent result for the question

Return type otter.test_files.abstract_test.TestCollectionResults

Raises QuestionNotInLogException – if the question is not found

question_iterator()

Returns an iterator over the most recent entries for each question.

Returns the iterator

Return type QuestionLogIterator

sort(ascending=True)
Sorts this logs entries by timestmap using LogEntry.sort_log.

Parameters ascending (bool, optional) – whether to sort the log chronologically; defaults to
True

100 Chapter 10. Logging

Otter-Grader Documentation

10.4.2 otter.logs.LogEntry

class otter.logs.LogEntry(event_type, shelf=None, unshelved=[], results=[], question=None, success=True,
error=None)

An entry in Otter’s log. Tracks event type, grading results, success of operation, and errors thrown.

Parameters

• event_type (EventType) – the type of event for this entry

• results (list of otter.test_files.abstract_test.TestCollectionResults,
optional) – the results of grading if this is an EventType.CHECK record

• question (str, optional) – the question name for an EventType.CHECK record

• success (bool, optional) – whether the operation was successful

• error (Exception, optional) – an error thrown by the process being logged if any

event_type

the entry type

Type EventType

shelf

a pickled environment stored as a bytes string

Type bytes

unshelved

a list of variable names that were unable to be pickled during shelving

Type list of str

results

grading results if this is an EventType.CHECK entry

Type list of otter.test_files.abstract_test.TestCollectionResults

question

question name if this is a check entry

Type str

success

whether the operation tracked by this entry was successful

Type bool

error

an error thrown by the tracked process if applicable

Type Exception

timestamp

timestamp of event in UTC

Type datetime.datetime

flush_to_file(filename)
Appends this log entry (pickled) to a file

Parameters filename (str) – the path to the file to append this entry

10.4. Otter Logs Reference 101

Otter-Grader Documentation

get_results()

Get the results stored in this log entry

Returns

the results at this entry if this is an EventType.CHECK record

Return type list of otter.test_files.abstract_test.TestCollectionResults

get_score_perc()

Returns the percentage score for the results of this entry

Returns the percentage score

Return type float

static log_from_file(filename, ascending=True)
Reads a log file and returns a sorted list of the log entries pickled in that file

Parameters

• filename (str) – the path to the log

• ascending (bool, optional) – whether the log should be sorted in ascending (chronolog-
ical) order; default True

Returns the sorted log

Return type list of LogEntry

raise_error()

Raises the error stored in this entry

Raises Exception – the error stored at this entry, if present

shelve(env, delete=False, filename=None, ignore_modules=[], variables=None)
Stores an environment env in this log entry using dill as a bytes object in this entry as the shelf attribute.
Writes names of any variables in env that are not stored to the unshelved attribute.

If delete is True, old environments in the log at filename for this question are cleared before writing
env. Any module names in ignore_modules will have their functions ignored during pickling.

Parameters

• env (dict) – the environment to pickle

• delete (bool, optional) – whether to delete old environments

• filename (str, optional) – path to log file; ignored if delete is False

• ignore_modules (list of str, optional) – module names to ignore during pickling

• variables (dict, optional) – map of variable name to type string indicating only vari-
ables to include (all variables not in this dictionary will be ignored)

Returns this entry

Return type LogEntry

static shelve_environment(env, variables=None, ignore_modules=[])
Pickles an environment env using dill, ignoring any functions whose module is listed in ignore_modules.
Returns the pickle file contents as a bytes object and a list of variable names that were unable to be
shelved/ignored during shelving.

Parameters

102 Chapter 10. Logging

Otter-Grader Documentation

• env (dict) – the environment to shelve

• variables (dict or list, optional) – a map of variable name to type string indicating
only variables to include (all variables not in this dictionary will be ignored) or a list of
variable names to include regardless of tpye

• ignore_modules (list of str, optional) – the module names to igonre

Returns

the pickled environment and list of unshelved variable names.

Return type tuple of (bytes, list of str)

static sort_log(log, ascending=True)
Sorts a list of log entries by timestamp

Parameters

• log (list of LogEntry) – the log to sort

• ascending (bool, optional) – whether the log should be sorted in ascending (chronolog-
ical) order; default True

Returns the sorted log

Return type list of LogEntry

unshelve(global_env={})
Parses a bytes object stored in the shelf attribute and unpickles the object stored there using dill. Updates
the __globals__ of any functions in shelf to include elements in the shelf. Optionally includes the env
passed in as global_env.

Parameters global_env (dict, optional) – a global env to include in unpickled function globals

Returns the shelved environment

Return type dict

10.4.3 otter.logs.EventType

class otter.logs.EventType(value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

Enum of event types for log entries

AUTH

an auth event

BEGIN_CHECK_ALL

beginning of a check-all call

BEGIN_EXPORT

beginning of an assignment export

CHECK

a check of a single question

END_CHECK_ALL

ending of a check-all call

10.4. Otter Logs Reference 103

Otter-Grader Documentation

END_EXPORT

ending of an assignment export

INIT

initialization of an otter.Notebook object

SUBMIT

submission of an assignment

TO_PDF

PDF export of a notebook

104 Chapter 10. Logging

CHAPTER

ELEVEN

OTTER.API REFERENCE

A programmatic API for using Otter-Grader

otter.api.export_notebook(nb_path, dest=None, exporter_type=None, **kwargs)
Exports a notebook file at nb_path to a PDF with optional filtering and pagebreaks. Accepts other kwargs
passed to the exporter class’s convert_notebook class method.

Parameters

• nb_path (str) – path to notebook

• dest (str, optional) – path to write PDF

• exporter_type (str, optional) – the type of exporter to use; one of ['html', 'latex']

• **kwargs – additional configurations passed to exporter

Returns the path at which the PDF was written

Return type str

otter.api.grade_submission(submission_path, ag_path='autograder.zip', quiet=False, debug=False)
Runs non-containerized grading on a single submission at submission_path using the autograder configuration
file at ag_path.

Creates a temporary grading directory using the tempfile library and grades the submission by replicating the
autograder tree structure in that folder and running the autograder there. Does not run environment setup files
(e.g. setup.sh) or install requirements, so any requirements should be available in the environment being used
for grading.

Print statements executed during grading can be suppressed with quiet.

Parameters

• submission_path (str) – path to submission file

• ag_path (str) – path to autograder zip file

• quiet (bool, optional) – whether to suppress print statements during grading; default False

• debug (bool, optional) – whether to run the submission in debug mode (without ignoring
errors)

Returns

the results object produced during the grading of the submission.

Return type otter.test_files.GradingResults

105

Otter-Grader Documentation

106 Chapter 11. otter.api Reference

CHAPTER

TWELVE

CLI REFERENCE

12.1 otter

Command-line utility for Otter-Grader, a Python-based autograder for Jupyter Notebooks, RMarkdown files, and
Python and R scripts. For more information, see https://otter-grader.readthedocs.io/.

otter [OPTIONS] COMMAND [ARGS]...

Options

--version

Show the version and exit

12.1.1 assign

Create distribution versions of the Otter Assign formatted notebook MASTER and write the results to the directory
RESULT, which will be created if it does not already exist.

otter assign [OPTIONS] MASTER RESULT

Options

-v, --verbose

Verbosity of the logged output

--no-run-tests

Do not run the tests against the autograder notebook

--no-pdfs

Do not generate PDFs; overrides assignment config

--username <username>

Gradescope username for generating a token

--password <password>

Gradescope password for generating a token

--debug

Do not ignore errors in running tests for debugging

107

https://otter-grader.readthedocs.io/

Otter-Grader Documentation

--v0

Use Otter Assign format v0 instead of v1

Arguments

MASTER

Required argument

RESULT

Required argument

12.1.2 check

Check the Python script or Jupyter Notebook FILE against tests.

otter check [OPTIONS] FILE

Options

-v, --verbose

Verbosity of the logged output

-q, --question <question>

A specific quetsion to grade

-t, --tests-path <tests_path>

Path to the direcotry of test files

--seed <seed>

A random seed to be executed before each cell

Arguments

FILE

Required argument

12.1.3 export

Export a Jupyter Notebook SRC as a PDF at DEST with optional filtering.

If unspecified, DEST is assumed to be the basename of SRC with a .pdf extension.

otter export [OPTIONS] SRC [DEST]

108 Chapter 12. CLI Reference

Otter-Grader Documentation

Options

-v, --verbose

Verbosity of the logged output

--filtering

Whether the PDF should be filtered

--pagebreaks

Whether the PDF should have pagebreaks between questions

-s, --save

Save intermediate file(s) as well

-e, --exporter <exporter>

Type of PDF exporter to use

Options latex | html

--no-xecjk

Force-disable xeCJK in Otter’s LaTeX template

Arguments

SRC

Required argument

DEST

Optional argument

12.1.4 generate

Generate a zip file to configure an Otter autograder, including FILES as support files.

otter generate [OPTIONS] [FILES]...

Options

-v, --verbose

Verbosity of the logged output

-t, --tests-dir <tests_dir>

Path to test files

-o, --output-path <output_path>

Path at which to write autograder zip file

-c, --config <config>

Path to otter configuration file; ./otter_config.json automatically checked

--no-config

Disable auto-inclusion of unspecified Otter config file at ./otter_config.json

12.1. otter 109

Otter-Grader Documentation

-r, --requirements <requirements>

Path to requirements.txt file; ./requirements.txt automatically checked

--no-requirements

Disable auto-inclusion of unespecified requirements file at ./requirements.txt

--overwrite-requirements

Overwrite (rather than append to) default requirements for Gradescope; ignored if no REQUIREMENTS argu-
ment

-e, --environment <environment>

Path to environment.yml file; ./environment.yml automatically checked (overwrite)

--no-environment

Disable auto-inclusion of unespecified environment file at ./environment.yml

-l, --lang <lang>

Assignment programming language; defaults to Python

--username <username>

Gradescope username for generating a token

--password <password>

Gradescope password for generating a token

--token <token>

Gradescope token for uploading PDFs

--python-version <python_version>

Python version to use in the grading image

Arguments

FILES

Optional argument(s)

12.1.5 grade

Grade assignments locally using Docker containers.

otter grade [OPTIONS]

Options

-v, --verbose

Verbosity of the logged output

-p, --path <path>

Path to directory of submissions

-a, --autograder <autograder>

Path to autograder zip file

110 Chapter 12. CLI Reference

Otter-Grader Documentation

-o, --output-dir <output_dir>

Directory to which to write output

-z, --zips

Whether submissions are zip files from Notebook.export

--ext <ext>

The extension to glob for submissions

Options ipynb | py | Rmd | R | r

--pdfs

Whether to copy notebook PDFs out of containers

--containers <containers>

Specify number of containers to run in parallel

--image <image>

Custom docker image to run on

--timeout <timeout>

Submission execution timeout in seconds

--no-network

Disable networking in the containers

--no-kill

Do not kill containers after grading

--prune

Prune all of Otter’s grading images

-f, --force

Force action (don’t ask for confirmation)

12.1.6 run

Run non-containerized Otter on a single submission.

otter run [OPTIONS] SUBMISSION

Options

-v, --verbose

Verbosity of the logged output

-a, --autograder <autograder>

Path to autograder zip file

-o, --output-dir <output_dir>

Directory to which to write output

--no-logo

Suppress Otter logo in stdout

--debug

Do not ignore errors when running submission

12.1. otter 111

Otter-Grader Documentation

Arguments

SUBMISSION

Required argument

112 Chapter 12. CLI Reference

CHAPTER

THIRTEEN

RESOURCES

Here are some resources and examples for using Otter-Grader:

• Some demos for using Otter + R that demonstrate how to autograde R scripts, R Jupyter notebooks, and Rmd
files, including how to use Otter Assign on the latter two formats.

• A quickstart guide to autograding R with Otter

Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program
at UC Berkeley. It is designed to grade Python and R assignments for classes at any scale by abstracting away the
autograding internals in a way that is compatible with any instructor’s assignment distribution and collection pipeline.
Otter supports local grading through parallel Docker containers, grading using the autograding platforms of 3rd-party
learning management systems (LMSs), non-containerized grading on an instructor’s machine, and a client package that
allows students to check and instructors to grade assignments their own machines. Otter is designed to grade Pyhon and
R executables, Jupyter Notebooks, and RMarkdown documents and is compatible with a few different LMSs, including
Canvas and Gradescope.

The core abstraction of Otter, as compared to other autograders like nbgrader and OkPy, is this: you provide the
compute, and Otter takes care of the rest. All a instructor needs to do in order to autograde is find a place to run Otter
(a server, a JupyterHub, their laptop, etc.) and Otter will take care of generating assignments and tests, creating and
managing grading environents, and grading submissions. Otter is platform-agnostic, allowing you to put and grade
your assignments anywhere you want.

Otter is organized into six components based on the different stages of the assignment pipeline, each with a command-
line interface:

• Otter Assign is an assignment development and distribution tool that allows instructors to create assignments
with prompts, solutions, and tests in a simple notebook format that it then converts into santized versions for
distribution to students and autograders.

• Otter Generate creates the necessary setup files so that instructors can autograde assignments.

• Otter Check allows students to run publically distributed tests written by instructors against their solutions as
they work through assignments to verify their thought processes and implementations.

• Otter Export generates PDFs with optional filtering of Jupyter Notebooks for manually grading portions of as-
signments.

• Otter Run grades students’ assignments locally on the instructor’s machine without containerization and supports
grading on a JupyterHub account.

• Otter Grade grades students’ assignments locally on the instructor’s machine in parallel Docker containers, re-
turning grade breakdowns as a CSV file.

113

https://github.com/ucbds-infra/ottr-sample
https://econ140-spring2020.shinyapps.io/otter_quickstart/
https://nbgrader.readthedocs.io/en/stable/
https://okpy.org/

Otter-Grader Documentation

114 Chapter 13. Resources

CHAPTER

FOURTEEN

INSTALLATION

Otter is a Python package that is compatible with Python 3.6+. The PDF export internals require either LaTeX and
Pandoc or wkhtmltopdf to be installed. Docker is also required to grade assignments locally with containerization, and
Postgres only if you’re using Otter Service. Otter’s Python package can be installed using pip. To install the current
stable version, install with

pip install otter-grader

If you are going to be autograding R, you must also install the R package using devtools::install_github:

devtools::install_github("ucbds-infra/ottr@stable")

Installing the Python package will install the otter binary so that Otter can be called from the command line. You can
also call Otter as a Python module with python3 -m otter.

14.1 Docker

Otter uses Docker to create containers in which to run the students’ submissions. Docker and our Docker image are
only required if using Otter Grade. Please make sure that you install Docker and pull our Docker image, which is
used to grade the notebooks. To get the Docker image, run

docker pull ucbdsinfra/otter-grader

115

Otter-Grader Documentation

116 Chapter 14. Installation

PYTHON MODULE INDEX

o
otter.api, 105

117

Otter-Grader Documentation

118 Python Module Index

INDEX

Symbols
--autograder

otter-grade command line option, 110
otter-run command line option, 111

--config
otter-generate command line option, 109

--containers
otter-grade command line option, 111

--debug
otter-assign command line option, 107
otter-run command line option, 111

--environment
otter-generate command line option, 110

--exporter
otter-export command line option, 109

--ext
otter-grade command line option, 111

--filtering
otter-export command line option, 109

--force
otter-grade command line option, 111

--image
otter-grade command line option, 111

--lang
otter-generate command line option, 110

--no-config
otter-generate command line option, 109

--no-environment
otter-generate command line option, 110

--no-kill
otter-grade command line option, 111

--no-logo
otter-run command line option, 111

--no-network
otter-grade command line option, 111

--no-pdfs
otter-assign command line option, 107

--no-requirements
otter-generate command line option, 110

--no-run-tests
otter-assign command line option, 107

--no-xecjk

otter-export command line option, 109
--output-dir

otter-grade command line option, 110
otter-run command line option, 111

--output-path
otter-generate command line option, 109

--overwrite-requirements
otter-generate command line option, 110

--pagebreaks
otter-export command line option, 109

--password
otter-assign command line option, 107
otter-generate command line option, 110

--path
otter-grade command line option, 110

--pdfs
otter-grade command line option, 111

--prune
otter-grade command line option, 111

--python-version
otter-generate command line option, 110

--question
otter-check command line option, 108

--requirements
otter-generate command line option, 109

--save
otter-export command line option, 109

--seed
otter-check command line option, 108

--tests-dir
otter-generate command line option, 109

--tests-path
otter-check command line option, 108

--timeout
otter-grade command line option, 111

--token
otter-generate command line option, 110

--username
otter-assign command line option, 107
otter-generate command line option, 110

--v0
otter-assign command line option, 107

119

Otter-Grader Documentation

--verbose
otter-assign command line option, 107
otter-check command line option, 108
otter-export command line option, 109
otter-generate command line option, 109
otter-grade command line option, 110
otter-run command line option, 111

--version
otter command line option, 107

--zips
otter-grade command line option, 111

-a
otter-grade command line option, 110
otter-run command line option, 111

-c
otter-generate command line option, 109

-e
otter-export command line option, 109
otter-generate command line option, 110

-f
otter-grade command line option, 111

-l
otter-generate command line option, 110

-o
otter-generate command line option, 109
otter-grade command line option, 110
otter-run command line option, 111

-p
otter-grade command line option, 110

-q
otter-check command line option, 108

-r
otter-generate command line option, 109

-s
otter-export command line option, 109

-t
otter-check command line option, 108
otter-generate command line option, 109

-v
otter-assign command line option, 107
otter-check command line option, 108
otter-export command line option, 109
otter-generate command line option, 109
otter-grade command line option, 110
otter-run command line option, 111

-z
otter-grade command line option, 111

A
AbstractOtterPlugin (class in otter.plugins), 87
add_plugin_files() (otter.check.notebook.Notebook

method), 52
after_execution() (otter.plugins.AbstractOtterPlugin

method), 88

after_grading() (otter.plugins.AbstractOtterPlugin
method), 88

all_hidden (otter.test_files.GradingResults attribute),
71

ascending (otter.logs.Log attribute), 100
AUTH (otter.logs.EventType attribute), 103

B
before_execution() (ot-

ter.plugins.AbstractOtterPlugin method),
88

before_grading() (otter.plugins.AbstractOtterPlugin
method), 88

BEGIN_CHECK_ALL (otter.logs.EventType attribute), 103
BEGIN_EXPORT (otter.logs.EventType attribute), 103

C
CHECK (otter.logs.EventType attribute), 103
check() (otter.check.notebook.Notebook method), 52
check_all() (otter.check.notebook.Notebook method),

52
clear_results() (otter.test_files.GradingResults

method), 71

D
DEST

otter-export command line option, 109
during_assign() (otter.plugins.AbstractOtterPlugin

method), 88
during_generate() (otter.plugins.AbstractOtterPlugin

method), 89

E
END_CHECK_ALL (otter.logs.EventType attribute), 103
END_EXPORT (otter.logs.EventType attribute), 103
entries (otter.logs.Log attribute), 99
error (otter.logs.LogEntry attribute), 101
event_type (otter.logs.LogEntry attribute), 101
EventType (class in otter.logs), 103
export() (otter.check.notebook.Notebook method), 53
export_notebook() (in module otter.api), 105

F
FILE

otter-check command line option, 108
FILES

otter-generate command line option, 110
flush_to_file() (otter.logs.LogEntry method), 101
from_file() (otter.logs.Log class method), 100
from_notebook() (otter.plugins.AbstractOtterPlugin

method), 89
from_ottr_json() (otter.test_files.GradingResults

class method), 71

120 Index

Otter-Grader Documentation

G
generate_report() (otter.plugins.AbstractOtterPlugin

method), 89
get_plugin_data() (otter.test_files.GradingResults

method), 72
get_question_entry() (otter.logs.Log method), 100
get_questions() (otter.logs.Log method), 100
get_result() (otter.test_files.GradingResults method),

72
get_results() (otter.logs.Log method), 100
get_results() (otter.logs.LogEntry method), 101
get_score() (otter.test_files.GradingResults method),

72
get_score_perc() (otter.logs.LogEntry method), 102
grade_submission() (in module otter.api), 105
grading_mode() (otter.check.notebook.Notebook class

method), 53
GradingResults (class in otter.test_files), 71

H
hide_everything() (otter.test_files.GradingResults

method), 72

I
INIT (otter.logs.EventType attribute), 104

L
Log (class in otter.logs), 99
log_from_file() (otter.logs.LogEntry static method),

102
LogEntry (class in otter.logs), 101

M
MASTER

otter-assign command line option, 108
module

otter.api, 105

N
Notebook (class in otter.check.notebook), 52
notebook_export() (otter.plugins.AbstractOtterPlugin

method), 89

O
otter command line option

--version, 107
otter.api

module, 105
otter-assign command line option

--debug, 107
--no-pdfs, 107
--no-run-tests, 107
--password, 107

--username, 107
--v0, 107
--verbose, 107
-v, 107
MASTER, 108
RESULT, 108

otter-check command line option
--question, 108
--seed, 108
--tests-path, 108
--verbose, 108
-q, 108
-t, 108
-v, 108
FILE, 108

otter-export command line option
--exporter, 109
--filtering, 109
--no-xecjk, 109
--pagebreaks, 109
--save, 109
--verbose, 109
-e, 109
-s, 109
-v, 109
DEST, 109
SRC, 109

otter-generate command line option
--config, 109
--environment, 110
--lang, 110
--no-config, 109
--no-environment, 110
--no-requirements, 110
--output-path, 109
--overwrite-requirements, 110
--password, 110
--python-version, 110
--requirements, 109
--tests-dir, 109
--token, 110
--username, 110
--verbose, 109
-c, 109
-e, 110
-l, 110
-o, 109
-r, 109
-t, 109
-v, 109
FILES, 110

otter-grade command line option
--autograder, 110
--containers, 111

Index 121

Otter-Grader Documentation

--ext, 111
--force, 111
--image, 111
--no-kill, 111
--no-network, 111
--output-dir, 110
--path, 110
--pdfs, 111
--prune, 111
--timeout, 111
--verbose, 110
--zips, 111
-a, 110
-f, 111
-o, 110
-p, 110
-v, 110
-z, 111

otter-run command line option
--autograder, 111
--debug, 111
--no-logo, 111
--output-dir, 111
--verbose, 111
-a, 111
-o, 111
-v, 111
SUBMISSION, 112

output (otter.test_files.GradingResults attribute), 71

P
passed_all_public (otter.test_files.GradingResults

property), 72
plugin_config (otter.plugins.AbstractOtterPlugin at-

tribute), 88
possible (otter.test_files.GradingResults property), 72

Q
question (otter.logs.LogEntry attribute), 101
question_iterator() (otter.logs.Log method), 100

R
raise_error() (otter.logs.LogEntry method), 102
RESULT

otter-assign command line option, 108
results (otter.logs.LogEntry attribute), 101
results (otter.test_files.GradingResults attribute), 71
run_plugin() (otter.check.notebook.Notebook method),

53

S
set_output() (otter.test_files.GradingResults method),

72

set_pdf_error() (otter.test_files.GradingResults
method), 72

set_plugin_data() (otter.test_files.GradingResults
method), 73

shelf (otter.logs.LogEntry attribute), 101
shelve() (otter.logs.LogEntry method), 102
shelve_environment() (otter.logs.LogEntry static

method), 102
sort() (otter.logs.Log method), 100
sort_log() (otter.logs.LogEntry static method), 103
SRC

otter-export command line option, 109
SUBMISSION

otter-run command line option, 112
submission_metadata (ot-

ter.plugins.AbstractOtterPlugin attribute),
88

submission_path (otter.plugins.AbstractOtterPlugin
attribute), 88

SUBMIT (otter.logs.EventType attribute), 104
success (otter.logs.LogEntry attribute), 101
summary() (otter.test_files.GradingResults method), 73

T
test_files (otter.test_files.GradingResults property),

73
tests (otter.test_files.GradingResults attribute), 71
timestamp (otter.logs.LogEntry attribute), 101
to_dict() (otter.test_files.GradingResults method), 73
to_gradescope_dict() (ot-

ter.test_files.GradingResults method), 73
TO_PDF (otter.logs.EventType attribute), 104
to_pdf() (otter.check.notebook.Notebook method), 53
to_report_str() (otter.test_files.GradingResults

method), 73
total (otter.test_files.GradingResults property), 73

U
unshelve() (otter.logs.LogEntry method), 103
unshelved (otter.logs.LogEntry attribute), 101
update_score() (otter.test_files.GradingResults

method), 73

V
verify_against_log() (ot-

ter.test_files.GradingResults method), 74

122 Index

	Tutorial
	Otter Assign
	Otter Generate
	Otter Grade

	Test Files
	Python Format
	Exception-Based Format
	Calling Test Case Functions
	Sample Test
	Resolving Point Values

	OK Format
	Caveats
	Writing OK Tests
	Sample Test

	R Format

	Creating Assignments
	Otter Assign Format v0
	Python Notebook Format
	Assignment Metadata
	Autograded Questions
	Question Points
	Solution Removal
	Test Cells
	Intercell Seeding

	Manually Graded Questions
	Ignoring Cells
	Student-Facing Plugins

	R Notebook Format
	Assignment Metadata
	Autograded Questions
	Solution Removal
	Test Cells

	Manually Graded Questions

	RMarkdown Format
	Assignment Metadata
	Autograded Questions
	Solution Removal
	Test Cells

	Manually Graded Questions

	Usage and Output
	Python Output Additions
	Export Formats and Flags

	Otter Assign Example

	Otter Assign Format v1
	Notebook Format
	Assignment Config
	Intercell Seeding

	Autograded Questions
	Solution Removal
	Test Cells
	OK-Formatted Test Cells
	Exception-Based Test Cells
	R Test Cells

	Intercell Seeding
	R Example

	Manually-Graded Questions
	Ignoring Cells
	Student-Facing Plugins
	Running on Non-standard Python Environments
	Sample Notebook

	R Markdown Format
	Assignment Config
	Autograded Questions
	Solution Removal
	Test Cells

	Manually-Graded Questions

	Usage and Output
	Python Output Additions
	Export Formats and Flags

	Otter Assign Example

	Converting to v1

	Student Usage
	Otter Configuration Files
	Configuring the Serialization of Environments

	The Notebook API
	Exporting Submissions
	Running on Non-standard Python Environments

	Command Line Script Checker
	otter.Notebook Reference

	Grading Workflow
	Generating Configuration Files
	Grading Container Image
	setup.sh
	environment.yml
	requirements.txt
	requirements.r
	run_autograder
	run_otter.py
	otter_config.json
	tests
	files

	Before Using Otter Generate
	Directory Structure
	Usage
	Grading Configurations
	Grading with Environments
	Autosubmission of Notebook PDFs
	Pass/Fail Thresholds
	Overriding Points Possible
	Intercell Seeding
	Showing Autograder Results
	Plugins

	Generating with Otter Assign

	Executing Submissions
	Grading Locally
	Configuration Files
	Using the CLI
	Basic Usage
	Requirements
	Support Files
	Intercell Seeding

	Grading on Gradescope
	Writing Tests for Gradescope
	Results

	Non-containerized Grading
	Grading from the Command Line
	Grading Programmatically
	Grading Results

	Execution
	Assignment Name Verification

	Submission Execution
	Notebooks
	Scripts
	Logs

	Plugins
	Built-In Plugins
	Google Sheets Grade Override
	otter.plugins.builtin.GoogleSheetsGradeOverride Reference

	Rate Limiting
	otter.plugins.builtin.RateLimiting Reference

	Gmail Notifications
	Setup
	Configuration
	Output
	otter.plugins.builtin.GmailNotifications Reference

	Creating Plugins
	Plugin Configurations
	Plugin Events
	during_assign
	during_generate
	from_notebook
	notebook_export
	before_grading
	before_execution
	after_execution
	after_grading
	generate_report

	AbstractOtterPlugin Reference

	Using Plugins
	Building Plugins

	PDF Generation and Filtering
	Cell Filtering

	Intercell Seeding
	Seeding Mechanics
	Seed Variables
	Notebooks
	Python Scripts

	Seeding Libraries
	Notebooks
	Python Scripts

	Caveats

	Logging
	Logging Environments
	Debugging with the Log
	Grading from the Log
	Otter Logs Reference
	otter.logs.Log
	otter.logs.LogEntry
	otter.logs.EventType

	otter.api Reference
	CLI Reference
	otter
	assign
	check
	export
	generate
	grade
	run

	Resources
	Installation
	Docker

	Python Module Index
	Index

